.....

Attacks and Defenses for
Intel SGX

Taesoo Kim

&Georgiaﬂm@@ﬁﬁuﬂﬁ@
o Technholog)y

—

About Myself

* 03-09: B.S. from KAIST in CS/EE

e 09-11: S.M. from MIT in CS

e 11-14: Ph.D. from MIT in CS

e 14- : Assistant Professor at Gatech

Research interests:

Operating Systems, Systems Security, Bug Finding, etc

https://taesoo.kim/

https://taesoo.kim/

SSlab People Projects Publications CVEs Visiting About Blog

Systems Software & Security Lab

We build practical systems with focuses on security, performance, robustness, or often just for fun. Our research projects have been
published in top academic conferences, and have made great impacts on real programs, such as Firefox, Android, and the Linux
kernel, that you might be using every day. If you are interested in hacking with us, please drop us an email via
<sslab@ecc.gatech.edu>.

In particular, we have one or two openings for postdocs and two positions for PhDs in this coming 2018 Fall.

News (all/18/17/16/15/14)

« [08/15/2018] QSYM got a Distinguished Paper Award at USENIX Security'18!
« [08/12/2018] DEFKOROOT won DEF CON CTF 2018!!

« [07/24/2018] uCFl is accepted to CCS 2018!

« [05/02/2018] QSYM and RTAG are accepted to USENIX Security!

» [04/18/2018] eCS is accepted to ATC'18

« [03/10/2018] Kaleidoscope accepted at the EuroSys Doctoral Workshop

« [02/07/2018] Steffen got the best poster award at the KAUST OBD Workshop!
= [01/22/2018] Solros and Ordo are accepted to EuroSys'18!

« [11/27/2017] Deadline is accepted to S&P'18!
» [11/14/2017] LATR is accepted to ASPLOS'18

« [11/11/2017] Insu has been selected as one of finalists for the MSR PhD fellowsh
« [11/03/2017] Gift by Intel to support our SGX research ($90K)!

= [09/20/2017] SGX-Bomb is accepted to SysTEX'17!

= [08/02/2017] RAIN, OSSPolice and OS for Fuzzing are accepted to CCS 2017!

» [08/01/2017] SAMSUNG Global Research Outreach (GRO) 2017 Awarded

» [07/25/2017] AVPASS is on DARK Reading 1/2/3 and WIRED

« [05/11/2017] PlatPal, PITTYPAT, Branch Shadowing Attack, and Dark ROP are a
« [05/04/2017] AVPASS is accepted to Black Hat USA 2017

« [05/03/2017] Gift by Mozilla to support our research on fuzzing ($60K)!

« [04/24/2017] Mosaic has won the best student paper award at EuroSys'17!

Group Leaders

RenDing

Our Group’s Research Interests

* Bug finding:
e.g., static analysis, fuzzing, symbolic execution, etc.

* System security:
e.g., system updates, Intel SGX, sandboxing, etc.

* System scalability:
e.g., file system, graph processing, scalable lock, etc.

Our Group’s Research Interests

(> 300 bugs in Linux, Firefox, OpenSSL, etc.)

CVEs

We frequently report and fix security-critical vulnerabilities that we find as a byproduct of our research. Some of bugs that have an
explictly assigned CVE or references are listed here:

Date
2018/07/27

2018/07/27

2018/07/27

2018/07/16

2018/07/16

2018/07/03

2018/07/03

2018/04/24

2018/04/01

2017/11/30

Description

Linux F2FS memory corruptions (link, link, link)

Linux Btrfs memory corruptions (link, link, link, link, link)

Linux ext4 memory corruptions (link, link, link, link, link)

Linux ext4 memory corruptions (link, link, link, link)

Linux F2FS memory corruptions (link, link, link, link, link)

Linux XFS memory corruption (link, link, link)
Linux XFS memory corruptions (link, link)

Linux ext4 memory corruptions (link, link, link, link)

Ref.
CVE-2018-14617

CVE-2018-14614,14615,14616

CVE-2018-
14609,14610,14611,14612,14613

CVE-2018-
10879,10880,10881,10882,10883

CVE-2018-
10840,10876,10877,10878

CVE-2018-
13086,13097,13098,13099,13100

CVE-2018-13083,13094,13095
CVE-2018-10322,10323
CVE-2018-1092,1093,1094,1095

CVE-2017-17081

https://gts3.org/pages/cves.html

https://gts3.org/pages/cves.html
https://gts3.org/pages/cves.html
https://gts3.org/pages/cves.html

DEFKOROOT: Won DEF CON CTF'18
(DEFKOR + ROOtmentary)

(ROOtmentary) °

.....

Attacks and Defenses for
Intel SGX

Taesoo Kim

&Georgiaﬂm@@ﬁﬁuﬂﬁ@
o Technholog)y

—

The Team

a97...
“ B Microsoft
Oregon State B Research

University

Disclaimer

https://software.intel.com/en-us/sgx/academic-research

intel' Developer Zone

Development » Tools > Resources »

Intel® Software Guard Extensions
(Intel® SGX)

An Intel® architecture extension designed to increase the security of
application code and data.

——

https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors

* On-going approaches

* Summary

Outline

* Threat model / assumption

* Traditional attack vectors
e Cache-based side channel

* Memory safety
* Weak mitigation techniques (e.g., ASLR)
* Uninitialized padding in EDL

* New attack vectors
* On-going approaches
* Summary

11

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors
* Page table attack
* Branch shadowing attack

* Rowhammer against SGX
e L1 terminal fault against SGX (i.e., Foreshadow)

* On-going approaches
* Summary

12

https://foreshadowattack.eu/

Revisited: Intel SGX 101

* “Practical” TEE implementation by Intel
e Extending x86 Instruction Set Architecture (ISA)

— Native performance
— Compatible to x86
— Commodity (i.e., cheap)

Lenovo T560 Dell OptiPlex 5040 Supermicro Server

Revisited: SGX for Cloud

Skylake CPU

Application (untrusted)

Operating System (untrusted)

Cloud provider (untrusted)

Revisited: SGX for Cloud

Application (untrusted)

Skylake CPU |Operating System (untrusted)

-~ Cloud provider (untrusted)

15

Revisited: SGX for Cloud (Isolation)

Q_
-
é Enclave c

Application (untrusted)

Skylake CPU |Operating System (untrusted) @

<

Cloud provider (untrusted)

Revisited: SGX for Cloud

(Remote attestation)
EPID

by de\;eloper

Application (untrusted)

Operating System (untrusted)

Cloud provider (untrusted)

(intel')
Skylake

Client

Revisited: SGX for Cloud
(Remote attestation)

EPID
(intei‘s by developer

e)
Data
| Code

Application (untrusted) w

Operating System (untrusted) 0

Cloud provider (untrusted)

Client =

SGX Ecosystem for Attackers

O : Trusted components (i.e., where we should attack)

g . Attacker’s capabilities (i.e., what attackers can do)

EPID
(inteis by developer

o Data o
Code
' Enclave J— ‘

' Aplication (untrusted) Q

Operating System (untrusted) 0

Cloud provider (untrusted)

3l .

Our Initial Interests as Attacker

Attacking applications running on enclaves
(i.e., breaking their isolation and confidentiality)
with the capabilities of the cloud provider

Not interesting
(unknown, not popular)

EPE%
(lnte ;
‘K\] = e a:‘,“\
N ::,)
Code
~ Enclave
y-

P
Appl|cat|on (untrusted)

Operating System (untrusted) Q

Cloud provider (untrusted

Not interesting
(non technical issues)

20

Summary: Intel SGX 101

* Two important design goals:
* Performance (i.e., native speed, multithread)
e General purpose (i.e., x86 ISA)

* Two important security primitives:

* |solated execution - confidentiality, integrity

* Remote attestation - integrity

21

Isolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

Physical Address
Memory Space

CPU Package
| Processor Key EPC
ﬁ Encrypted r---.

code/data

Memory Encryption
Engine (MEE)

22

Isolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

CPU Package

=f

Processor Key

j ESnoopmg

Memory Encryption

Engine (MEE)

Physical
Memory

EPC

Encrypted

code/data

Address
Space Access from
OS/VMM

Access b/w
enclaves

23

SGX’s Threat Model (very strong!)

. All except the core package can be malicious
. Device, firmware, ...
. Operating systems, hypervisor ...

. DoS (availability) is naturally out of concern

. Intel excludes cache-based side-channel
(due to performance)

What if Enclave is Compromised?

* Leak sensitive information
* Prevent attackers from being audited/analyzed
* Permanently parasite to the enclave program

Protected?
by SGX Leak secret Rootkit

No access
from
OS/VMM

What if Enclave is Compromised?

* Leak sensitive information

Due to 1) its strong threat model and
2) consequences of compromises, developing a

secure enclave program is much more difficult
than a typical program!

No access
from
OS/VMM

26

Demonstrated Post Exploitation

* Dumping confidential data
* e.g., memcpy(non-enclave region, enclave, size)

* Permanent parasite
* e.g., MiTM on the remote attestation

* Breaking ecosystem
e e.g., leaking attestation keys for Quoting enclaves

Hacking in Drarkness: Return-oriented Programming against Secure
Enclaves

Jaretivak Leet dingoo Jangt Yeongiin Jang”
Taesoo Kin™

TRAIST

Abstract

Intel Soliwane Cuand Exlensums (300K 15 00 bandware
basend Trgsted bPaecunon baronment (TEE)

wubely seenas o |||-‘1r|3-: sululim L Lrsditiona -'e-.|.1.|r|I:.-
tweats. While SGX promises surong prosection to bug-
tres software, decades of cxperience show that we have
b expeot vulnernbilickes In oy non-urivial npplicarion. In
n rraditional ervironment, such vulncrabilities often allow
ottackoers o take complate contol of vulnemble syetems.
Ettorts to evaluate the seeurdoy of SGX have focused on

“(eargia lnstitute of Technology

Modvin Kwal” Yesea! Choil Chanaho Choi™
Marcts Peinade” Breas Bvanphoon Kang™

tMicrosoft Research

The vomsegquences of Thak RUP s alarmmng; the

comnprletely breach the enclivee s memory pro
mul ek thie SOX hardware o disclosing U
enchsve s eneryphion keys and prodscmg measaremen

rzpuarts Uil defed renoate allestson, This resull drng by

wuanpuling, b

[FEPEEHN

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Qut-of-Order Execution

Jo Van Bulck!, Marina Minkin?, Ofir Weisse?, Daniel Genkin?, Baris Kasikci®
Mark Silberstein?, Thomas F. Wenisch?, Yuval Yarom*

. Frank Piessens!,

. and Raoul Strackx!

Vimec-DistriNet, KU Leuven, >Technion, 3 University of Michigan, *University of Adelaide and
Data61

Abstract

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-
world mduxm .:ppllu.muns l.lkc .ldmm.lg«. of the xtmng

k. n anfancnd canfda | F PRI i SEPURpIE Pupp——

distrusting enclaves with a minimal Trusted Computing
Base (TCB) that includes only the processor package and
microcode. Enclave-private CPU and memory state is
exclusively accessible to the code running inside it, and
remain icitly 3 [all o |

tentially mali

Thinking of SGX Usages

User
)
&

Company

e.g., prevent reverse engineering
(or DRM data)

28

Traditional Attack Vectors

* Cache-based side channel

* Memory safety

* Weak mitigation techniques
* Uninitialized padding in EDL

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
- e.g., control flow hijacking

* Weak mitigation techniques
— e.g., breaking ALSR

* Uninitialized padding in EDL

- e.g., leaking security sensitive information

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka Irazoqui. and Thomas Eisenbarth

Worcester
{anog?

Abstract, In mod
commonly shared. a
CAN cause privacy &
forced, Intel propoe
within the processo

.CR] 24 Feb 2017

Ferdinand Brasser', Urs Milller®, Alexandra Dmitrienko®, Kari Kostiainen®, Srdjan Caplun®, and

m

Side-c
tion of §
depende:
executio
quently,
ing coun
widely 2
side cha

arXiv’17

WOOT’17

Software Grand Exposure: SGX Cache Attacks Are Practical

Ahmad-Reza Sadeghi'

Cache Attacks on Intel SG

Johannes Gotzfried

FALY Erlangan-Mumsmilssg
jehannas goetzirie

ifcs.faw.de

ABSTRALT

Fior the &rsi time, we prscticall
SN mwtlaves are vidles ahile i
A @ caw abisly, W piesenl am
misck on AFS when rennieas i
Usling, Merve anil] Sacillet s =lin b
caacter pETh By ETAAniEm el TEE

o eract the AES seoret bev i
s by Al encrvpiesd b
B B . | T gy e

2017

Moritz Eckart

Frﬂﬁmﬂhuth

rhineedE fh-musnstar arXiv’ 17

Malware Guard Extension:
Using SGX to Conceal Cache Attacks

(Extended Version)

Michael Schwarz
Graz University of Technology

Samuel Weiser Daniel Gr
Gz University of Technobogy Graz University of

Email: michael schoare & iaik. oo grae st Emuail: samuel weiser @ imik. wgrae. s Email: daniel. gruss @

Clémenting Maurice
Graz University of Technology
Email: clementine maurice@ ik mugraz, s

Stefan Mangard
Graz University of Technology
Email: stefanmangard@iaik tugraz.at

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Cache attacks are possible and often, makes it
“easier” to launch the attack due to its strong threat

model (e.q., using PMC)
—> Known defenses (e.g., coloring ...)

side cha ABSTRALT .

Fur the . i, we pesctical Using SGX to Conceal Cache Attacks
S Y e laves are viiloeer edile agy
As g e iy, e piesenl am :
winck on AES when renmeg i (E«Xtﬂﬂdﬂd VETS]DH)
Usding Woewe- all Sl s =linn s
uuuuuuuuuuuuuuuuuu hIng . . B
o egiract ihe AES seeret ey | Michael Schware Samuel Weiser Danael Gr
mivvsbgabing Al encrvpbed bl Graz University of Technology Gz University of Technobogy Graz University of

A e e Email: michael schware @ikt groe. s Email: samuel.weiser & iaik. gz s Email: daniel gruss &

Clémenting Maurice Stefan Mangard
Graz University of Technology Graz University of Technology
Email: clementine maurice@ ik mugraz, s Email: stefanmangard@iaik tugraz.at

2017

CS101: Cache Structure

. Processor
Graphics

P
i
¥

. mlé :.Shavred' 3 Cache**

'ﬂs s 5 R ;Ii{i"”

#liCore = System

deaas

.5 - Controller

including
DMI, Display

. 443 4
IBIR

L

i Agent&'
Memory |

and Misc. /0

'1
1

% Memory Controller 1/0

Integrated:Memory Controller~3:Ch DDR3

Core 0 Core1 Core2 - Core3

CS101: Cache

Shared L3 Cache

Integrated:Memory Controller:-3:Ch DDR3

Core 0 Core1 Core2 - Core3

CS101: Cache

Shared L3 Cache

Q
P
|

cpU L3 hit L2 hit L1 hit

Integrated:Memory Controller~3:Ch DDR3

Core 0 Core1 Core2 - Core3

CS101: Cache

Shared L3 Cache

Which cacheline do we have to keep/evict (policy)?
How to organize cacheline (structure)?

Basic Idea: Cache Side-channel

o o

Real Attack: AES?

S0

B

S0

S0

_’

{SubByteghH ShiftRows + MixColumns + AddRoundKeys} x {10, 12, 14}

bn,u bn.1 bu,,z bn.:
bl.ll bl.l bl.l bl..l
b,,|b,

b].l'l

Monitoring cacheline access of Lookup Table!

Known Attack Demonstrations

 Known cache-based side channel attacks:

e 2003 DES by Tsunoo et al. (with 226.0 samples)
2005 AES by Bernstein et al. (with 218.9 samples)
2005 RSA by Percival et al. (-)

2011 AES by Gullasch et al. (with 26.6 samples)

2017 AES by Ahmad et al. (with 10 samples agai

Cache Side-channel (in Cloud)

£ Windows Azure

Cache Side-channel against SGX

£ Windows Azure

Thinking of SGX Adversaries:
SGX Makes Cache Attack Easier

* Accurate intervention (i.e., scheduling/exception)
e Controlled environment (i.e., OS, hyperthread)
 Rich information available (e.g., physical mapping, PMC)

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth

Worcester Polytechnie Institute, Worcester, MA, USA
{amoghimi, girazoki,teisenbarth }Ovpi.edu

Abstract. In modern computing environg
commonly shared, and parallel computati
can cause privacy and security problemd

forced, Intel proposed SGX to create a

within the processor. SGX relies on the hardware, and clams runtime

Software Grand Exposure: SGX Cache Attacks Are Practical

Ferdinand Brasser', Urs Milller, Alexandra Dmitrienke®, Kari Kostiainen®, Srdjan (_‘upkun'-‘. and
Ahmad-Reza Saulc_uhi'

ISystem Security Lab, Technische Universitial Darmstadt, Germany
{ ferdinand. brasser,ahmad sadeghi @ most iu-darmstadn. de

1 _— e -
“Institute of Information Security, ETH Zurich, Switserland
muurs@ studentethe ch, {alexandra dmitrienko, kari kostiainen srdjan capkun } @infethe.ch

Abstract

Side-channel information leakoge is a known limita-
tion of 5GX. Researchers have demonstrated that secret-
dependent information can be extracted from enclave
execution through page-fault access patberns. Conse-
quently, various recent research efforts are actively seek-
ing countermeasures io SGX side-channel attacks. It is
widely assumed that 8GX may be vulnerable to other
side channels, such as cache access pattern monitoring,

that can saue remedely verilable atlestation stlements
on enclave software configuration, These SGX mecha
nisme (isokation,

ment of applicy

securily. The

cloud computing

=T TR Ty o
ture without having 1o fully rust the cloud provider and

the entire software stack

Cache Attack is Practical Concern?

* Yes or no, depending on contexts and applications.
* Think first: why considering SGX? on cloud?

* Performance (= cache) vs. potential risks!

e SGX can make the cache attack harder too

* By leveraging isolation / randomization
(security by obscurity practical)

— Intel explictly noted that it’s better to be
addressed in SW (if you wish) rather than HW (by
default).

Breaking Remote Attestation via
Cache-based Side-channel Attacks

CacheQuote: Efficiently Recovering Long-term
Secrets of SGX EPID via Cache Attacks

-

-~ . . D . 3.4 . 1 . 2
Fergus Dall', Gabrielle De Micheli?, Thomas Eisenbarth®*, Daniel Genkin®?,
Nadia Heninger?, Ahmad Moghimi* and Yuval Yarom'®

' University of Adelaide
fergus@beware.dropbear.id.au, yval@cs.adelaide.edu.au
? University of Pennsylvania
{gmicheli,danielg3,nadiah}@cis.upenn.edu
* University of Liibeck
thomas.eisenbarth@uni-luebeck.de
* Worcester Polytechnic Institute
amoghimi@upi.edu
% University of Maryland
® Data61

Abstract. Intel Software Guard Extensions (SGX) allows users to perform secure
computation on platforms that run untrusted software. To validate that the compu-
tation is correctly initialized and that it executes on trusted hardware, SCXunanant
attestation providers that can vouch for the user’s computation. Commuy
these attestation providers is based on the Extended Privacy 1D (EP

45

Defense: Cache Attacks

* Cache oblivious implementation of crypto algos

* Fine-grained code/data randomization

* Mitigating via contiguous monitoring (e.g., Varys)

* Looking for better HW-based solutions!

(e.g., partitioning/coloring

Varys
Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko’, Bohdan Trach®, Robert Krahn', Andre Martin®,
Christof Fetzer', Mark Silberstein®
"TU Dresden, *Technion

Abstract

Numerous recent works have experimentally shown that
Intel Software Guard Extensions (SGX) are vulnerable to
cache timing and page table side-channel attacks which
could be used to circumvent the data confidentiality guar-
antees provided by SGX. Existing mechanisms that pro-
tect against these attacks either incur high execution costs,
are ineffective against certain attack variants, or require
significant code modifications.

cludes side channels from the SGX threat model, SCAs
effectively circumvent the SGX confidentiality guarantees
and impede SGX adoption in many real-world scenarios.
More crucially, a privileged adversary against SGX can
mount much more powerful SCAs compared to the un-
privileged s
ample,

levels

by slov

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Victor Costan, Ilia Lebedev, and Srinivas Devadas
victor@ costan.us, ilebedev@mit.edu, devadas@mit.edu
MIT CSAIL

Abstract

Sanctum offers the same promise as Intel’s Software
Guard Extensions (SGX), namely strong provable isola-
tion of software modules running concurrently and shar-
ing resources, but protects against an important class of
additional software attacks that infer private information
from a program’s memory access patterns. Sanctum shuns
unnecessary complexity, leading to a simpler security
analysis. We follow a principled approach to eliminat-
ne enfire

attack surfaces throneoh isolation. rather than

formal verification effort [26] spent 20 man-years to cover
9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and
uncertain prospects for formal verification, a prudent sys-
tem designer cannot include either in a TCB (trusted com-
puting base) andmuatlaalealaanbane fon e
isolation 1y

Fortung
[S, 36] ha!
ing softwarc

e

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
- e.g., control flow hijacking

* Weak mitigation techniques
— e.g., breaking ALSR

* Uninitialized padding in EDL

- e.g., leaking security sensitive information

Memory Safety Issues

* SGX is not free from memory safety issues

* Current ecosystem is built on memory unsafe lang.

Hacking in Darkness: Return-oriented Programming against Sceure
Enclaves

Jostvak Leet dinsoo Janegt Yeonsiin dang™ Nokvun Kwak” Yeseal Cholt Chavaho Choi”
Thesoo Kiw” Marcus Peinade” Bread Buanghoon Kang™

TRALST

Abstract

Intel Soliware Cuanl Extensims (300K 15 0 bindware
based Trsted bsesuion Bovironment CFEE) tisl s
wenbe |y s s o prosnd sang solihum L ssditens] securivg
threats. While SGX promiszs srong prosection to bug-
v : i w that e have
pplicarion. In
nrr s often allow
e systems.
v focused on

“Georgia lnstitute of Technology

tMicrosott Research

The comseguences of Thek RO e alarmang; the

lischer cam comnprletely breach the snclve s menury pro
lecbms aml tnek the SOX hardware ol disclosing U
enchave s encryplion keys and predscing measuremenl
vy Uil el remnte allestisbn, This resall dnng by
anggesls basl SOX research shonld Tocus more on s

T sesunby g nelber s an nesking e hee

develupanent imere cumvement by espramding the Trusted
soanpuling basse sl The slisck sorbsce Tes, Oinaphiens,

[} BV

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi

University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi
TU Darmstadt, Germany

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be

formallyneseasiast e Saninaat it saaetiauve ver,
legag ‘de
SGX .
Forn 23
legacy .me

memory-corruption vulnerabilinies that plague legacy
software are also very likely to occur in those complex

48

Return-oriented Programming (ROP)

vuln(*input) {
dst[0x100];
memcpy(dst, input, 0x200);

}

dst

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

}

dst

pop rdi; ret

50

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

e.g., system(“/bin/sh”)

dst

pop rdi; ret

system(argl)

51

Typical Requirements for ROP

void vuln(char *input) { :
Code (via reverse

char dSt; engineering)
memcpy(dst, input);

e.g., system(“/bin/sh”)

pop rdi; ret

dst —}I
Need to determine
the length of payload

system(argl)

52

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!
char dst[eleledl; (e.g., loaded in an encrypted form)

memcpy(dst, input, IEEER);

53

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!
char dst[Relrir; (e.g., loaded in an encrypted form)
memcpy(dst, input, IKEER);

}

SGX doesn’t report RIP
dst 0x0000 directly but the

0x0008

corresponding page

0x0100
0x0108
0x0110
0x0118

X

0x0108

0x0110
0x0118

54

ROP in Darkness: Dark ROP

» Step 1. Debunking the locations of pop gadgets
 Step 2. Locating ENCLU + pop rax (i.e., EEXIT)
 Step 3. Deciphering all pop gadgets

 Step 4. Locating memcpy()

Threat Model for DarkROP

* Know existence of a buffer overflow (i.e., crash)
* Crashing the enclave arbitrarily times

* Built with standard libraries (e.g., SGX SDK)

* Distributed in an encrypted form (like VC3)

Step 1. Looking for pop Gadgets
<,

ou have a full control over the layout
of the enclave

0x0000
0x0008

0x0100

0x0110
0x0118

57

Step 1. Looking for pop Gadgets

OxffO0
OxffO1
Oxff02

0x0000
0x0008

0x0100

0x0110
0x0118

Rip = Oxff00
(e.g., crash illegal instruction)

58

Step 1. Looking for pop Gadgets

OxffO0
OxffO1
Oxff02

$

0x0000
0x0008

0x0100

0x0110
0x0118

Rip = Oxff00
(e.g., crash illegal instruction)

ret

0x0000
0x0008

0x0100

ret
___0x0110 |
0x0118

Rip = 0x0118
(segfault)

59

Step 1. Looking for pop Gadgets

OxffO0
OxffO1
Oxff02

Oxff30f§ pop ????

0x0000
0x0008

0x0000
0x0008

0x0100
ret

0x0100

0x0110 0x0110
0x0118 0x0118
0x0128

Rip = Oxff00 Rip = 0x0128
(e.g., crash illegal instruction) g) (segfault)

Step 1. Looking for pop Gadgets

Catalog of pop gadgets

(unknown args)

Oxff02 = pop ?;ret

O0xff30 = pop ?;pop ?;pop ?;ret

ret

0x0000
0x0008

0x0100

ret
___0x0110 |
0x0118

Rip = 0x0118
(segfault)

Oxff30f§ pop ????

0x0000
0x0008

0x0100

ret

0x0110
0x0118
Nx0120

0x0128

Rip = 0x0128
(segfault)

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions

* rax = 0: EREPORT
* rax = 1: EGETKEY

e rax =4: EEXIT

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions
* rax = 0: EREPORT
* rax =1: EGETKEY

e rax=4: EEXIT 0x0000

0x0008

0x0100

—> Scan code for each “pop????;ret” popjret

ENCLU

— If gracefully exit, rip = ENCLU

63

Step 3. Deciphering pop Gadgets

e EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— Check arguments

0x0000
0x0008

0x0100
ret pop argl; pop arg2; ret

0x0001
0x0002
ret pop rax; ret

0x0004
ret ENCLU

64

Step 3. Deciphering pop Gadgets

e EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— Check arguments Deciphering
pop”? pop? gadget
0x0000

0x0008 argl = 0x0001
arg2 = 0x0002
0x0100

op rsi
ret pop argl; pop arg2; ret _|_ . POP .
0x00C _ _ = pop rdi
0x0002 Register file '
: e
0 0 4 pop rax; ret rax = 0x0004
et ENCLU rsi = 0x0001

rdi = 0x0002

65

Step 4. Looking for memcpy()

* [dentifying memcpy(dst*, valid, 0x10)

ret pop rdi; pop rsi; pop rdx; ret
OxEEQO
OxFFOO
0x0010

ret Varying (looking for memcpy)
ret pop rax; ret

ret ENCLU

Step 4. Looking for memcpy()

* E.g., invoking memcpy(0x7ff1000, any valid, 0x10)

Untrusted application memory

0x7fff1000: PO 00 00 00 00 00 00 00 00 ...
0x7fff1010: 00 00 00 00 00 00 00 00 00 ...

0x7fff2000: 01 02 03 04 05 06 07 08 09 ...
0x7fff2010: 11 121314 151617 18 19 ...

Ox7fff1000: 01 02 03 04 05 06 07 08 09 ...
0x7fff1010: 11 1213141516 17 18 19 ...

0x7fff2000: 01 02 03 04 05 06 07 08 09 ...

0x7fff2010: 11 1213141516 17 18 19 ...

Gadgets Everywhere (e.g., SDK

From

__intel_cpu_indicator_init:

Gadget From Gadget
ENCLU Gadget GPR Modification Gadget
do_ereport:
ENCLU libsgx_trts.a
pop ris
pop rdx pop ril4
pop rcx pop ri3
pop rbx pop rl2
ret pop r9
sgx_register_exception_handler: pop r8
mov rax, rbx libsgx_trts.a pop rbp
pop rbx pop rsi
pop rbp pop rdi
pop rl2 pop rbx
ret pop rcx
Memcpy Gadget pop rdx
memcpy : libsgx_tstdc.a pop rax
ret
sgx_sgx_fa_proc_msg2_trusted: libsgx_tkey_exchange.a EQV(:L(I(Stuiget
pop rsi
pop rl5 do_ereport:
ret enclu
pop rdi pop rax
ret ret

sgx_tstdc.1lib

sgx_trts.lib

DEMO: PoC Dark ROP

Step1. Looking for pop gadgets

Case Study 1: Unsealing Data

Shadow_read_sealing_data()
{
ROP_{o_egelkey() o m

unseal_data () ENCLU Gadget

}
O=r

* Unsealing and leaking confidential data

* i.e., EGETKEY retrieves the hardware key bound to
specific enclave

71

Case Study 2: Hijacking Remote
Attestation

Emulated Enclave Secure Enclave

RSI| Gadget
RDI Gadget
RCX Gadget

memcpy

Gadget ENCLU
Gadget

* Breaking the Integrity guarantees of SGX
* MiTM between secure enclave and attestation server
* Masquerading to deceive remote attestation service

72

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

SGXBOUNDS: Memory Safety for Shielded Execution

Dmitrii Kuvaiskii® Oleksii Oleksenkof

Sergei Arnautov’ Bohdan Trach'

Pramod Bhatotia® Pascal Felber! Christof Fetzer!

"TU Dresden *The Umiversity of Edinburgh University of Neuchitel

Abstract

Shielded execution based on Intel SGX provides strong secu-
rity guarantees for legacy applications munning on untrusted
platforms. However, memory safety attacks such as Heart-
bleed can render the confidentiality and integrity properties
of shielded execution completely ineffective, To prevent these
attacks, the state-of -the-art memory-safety approaches can he
used in the comext of shielded execution.

Shielded execution aims to protect confidentiality and

integrity of applications when executed in an untrusted envi-

ronment [19, 22]. The main idea is to isolate the application

from the rest of the system (including privileged software),
using only a narmow interface (o communicate (o the ouside,

potentially malicious world. Since this interface defines the

security boundary, checks are performed to prevent the un-

trusted environment from

in an altamnd to leal con]

73

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

» Key idea: an efficient tag representation thanks to
smaller memory space!

63 31 0

UB pointer I

v

object LB

Lower Bound Upper Bound

Defense: SGXBounds

- g 1N = Tt F =

int *s[N], *d[N]

for (i=0: i<M: i++):
si=5+1
di=d+ 1i

val = load si

store val, di

int #s[N], *d[N]
s = specify_bounds(s, s + N)
d = specify_bounds(d, d + N)
for (i=0: i<M: i++):
51 =5 + 1
di=d + 1
sp, sLB, sUB = extract(si)
if bounds_violated(sp, sLB, sUB):
crash(si)
val = load si
dp, dLB, dUB = extract(di)
if bounds_violated(dp, dLB, dUB):
crash(di)
store val, di

75

Done w/ Memory Safety on SGX?

* SGXBounds is a temporary solution
* No temporal safety (i.e., UAF)
 More address space in the future (e.g., large pages)

* What about traditional mitigations (required)?

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
- e.g., control flow hijacking

* Weak mitigation techniques

— e.g., breaking ALSR

e Uninitialized padding in EDL
- e.g., leaking security sensitive information

SGX Mitigation Checklist

* Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
& RELRO

DEP/NX

ASLR/PIE

ecall_pointer_user_check():

ish Srbp e ——
push rbp KO %fs:0x28,%rsi
Mo wrsp,%rbp

sub OO0 ¥rop 1m A@A1E carnl |l naninter user checkw11 R
S _L.._-L:‘.-_Ir_ll'- . "]_]_'- ...u_-tl._.':l . ‘:1___ "k 'I‘k J_-__..L__

mov %rdi,-@x88(%rbp) catlq orbd <__stack_chk_rail>

0 Hrdl , -OxEB8 (%
Bpnmd o lWA T ealasn™ oLV L

retq

%fs:0x28 . %rax

arax, -dxB(%rbp)

prologue epillogue

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
@ RELRO

%) ASLR/PIE

80

Defense: ASLR/SW-DEP inside SGX

* Popular mitigation schemes:

@ Stack Canary
@ RELRO

%) ASLR/PIE

SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs

Jachack Sent | Bvounyoung Leetd, Scongmin Kim®, Ming-Wei Shikd,
Inosik Shin®, Dongsu [lan”, Taesvo Kime

TRAINT F Puedue Univessin

Tieaegia Tustiture af Teckoology

{jachack, dallas Mk, ishin, dongsu_han)@ kaistac kr, bleeth purdue.edu, {mingweishih, tacson [@ gatceh.edu

Advstraei— Draditiosal execoution emimomments dephi Address
Space Layoul Mandomization (ASLK) (o deledd against nwanary
corruplion allacks. However, Litel Soflware Goard Exlension
AN, a wew lrusted execulion enviconnrenl desipned lo serve
securily-crilical applicatioms o Uwe choucdl. acks swch an ellective.
well-sludied Reatwre. L Facl. we lind that applying ASLEK (o 5GX
prograns cases moa-lrivial issoues beyondl simple enpimeering lor
a numiber of reasons: 1y SGX% B desizeed o defeal a stronger
adversary s Uve iraditional oeodel, which requices Use addeess
space Byyoul fo be hidden Iroos (e kecwel; 21 Ure lnsited neanry
uses in SGE proprans presesl a new challenge in providing a
sulliciend depree of entcopr: 3) renwde allestalion conllicts witl
the dyvsamic rebocation ceguired Tor ASLK; asd 41 fhe SGX
spevification melice on known wnd fised addmesses for key dota
strwctures that canmt be rondomized.

swatem and hvpervisor I also offers hardwore-boscd messure-
moeat. rbestation, ond enclave poge ncoess conral o verthe the
Intcgricy of its applicotion code.,

Unlormstely, we obmerve Thal Dear properies, mamely,
comlidentuahiny md amegrity, do ool gusnaniee e
seannly of 5O programs, aspecid by wehen tation] menoey
vorruption wilnerhnlines, such as boller overlos, eus) mside
S0GX progrome, Worse yor, mony existing SGX-bozed svaemes
rend e hove o large oo
Tibwory in Haven T12]
for Inrel SGX (28, 2
unsafe programming
in an assemly languass

isclunal

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

* Visible memory layout
* Small randomization entropy
* No runtime page permission change

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

* Visible memory layout
- Secure in-enclave loading

* Small randomization entropy
— Fine-grained ASLR

* No runtime page permission change
— Soft-DEP/SFI

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

Enclave program

Data pages

User process

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

In-enclave
loader

Code pages

Encrypted
enclave program

N
<<<<<<<<
}}}}}}}}
Ca

W .
! J Enclave program
{ .

Data pages

User process

SGX-Shield’s Approach:

In-enclave Loading

Encrypted
enclave program

N
<<<<<<<<
}}}}}}}}
Ca

W.
|
e

Stage 1

Enclave

In-enclave
loader

Code pages

Enclave program

Data pages

User process

In-enclave
loading

Stage 2

Enclave

SGX related
data structure

Runtime Data

Data pages

User process

86

Stage 1

Encrypted
enclave program

N
<<<<<<<<
}}}}}}}}
Ca

o

Enclave

In-enclave
loader

Code pages

E
s <
-

}}}}}}}}}}}

(((((((((((

???????????

Enclave program

Data pages

User process

SGX-Shield’s Approach:
In-enclave Loading

In-enclave
loading

Stage 2

Enclave

< < <

E

-
{{{{{{{{{{{

>>>>>>>>>>

SGX related
data structure

Runtime Data S

Data pages

User process

87

SGX-Shield’s Fine-grained ASLR

Secure in-enclave RU C
loading
| RU A :: A
S A . RU AL
= RU B ,
1-]g A
o—JmpC
Q _
|- RU C
| RU B
ig A
Jmp C*

No Runtime Permission Change

Enclave inf:;;ie Enclave RWX
V loading Z/WWJWJ%
/ M= é
Secure in-enclave % ? / %
loader % ’ g
% A %
L _C_DEJE‘_ pages _é J . ” Code pages g
e %
Sanananan s dans é o é SGX related
% é data structure
Enclave program é é Runtime Data
Data pages / |ﬁ| Data pages
sz t %
User process User process

89

SW-based Permission Enforcement
(via SFI like Nacl)

Hardware-based Software+Hardware
Out of enclave | permission permission
Code of loader RWX) No Permission
Loading
Code RWX X
Data of loader RW No Permission
Data RW RW
Out of enclave i

Virtual address space of an enclave
90

DEMO: SGX-Shield

https://github.com/sslab-gatech/SGX-Shield

https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield

SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained

side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

Securing ASLR on SGX against Multifaceted
Side-channel Attacks

Paper #233

Abxlmd—lntel Software Guard Extensnom (SGX) allows
security lications to run in isolation, thus protecting
their confidentiality and integrity. SGX protects applications from
all other software on the platform, including the operating system.
However, the trusted computing base of the application still
includes the application code itself, and vulnerabilities in this
code can have the same catastrophic consequences under SGX
as they have elsewhere. Thus, it is desirable to deploy the known
general defense schemes in SGX. In particular, address space
layout randomization (ASLR) has been proposed as a general
way to mitigate vulnerabilities in SGX code.

This paper i the I security chall of
deploying ASLR in SGX-like environments which are subject
to multiple side-channels. An SGX adversary who can observe
the memory accesses of the code running under SGX at cache-
line and/or page granularity may gain enough information to
derandomize even fine-grained ASLR.

Our results include multifaceted side-channel attacks against
SGX-Shield, the only published ASLR system for SGX. One of

protect entire classes of vulnerabilities from being exploited
highly desirable. Techniques such as control-flow integrity

(CFI) [6], address space layout randomization (ASLR) [61],

data execution prevention (DEP) [8], and stack canaries [20] are
widely deployed in mass-market commercial systems and have

kept countless bugs from becoming exploitable vulnerabilities.

Despite the undeniable benefits of these generic defenses,

their deployment in TEEs is, at best, incomplete. The reason

lies in the additional challenges posed by the TEE environment.

Some of the defenses such as CFI or stack canaries are

compiler-based and can be dfunl:.ssly deployed into TEEs.

However, other dclen\u require system support lh.nl is not
readily available in
is the focus of thj
operating system
However, in the
attacker. SGX-SI
loader into the enc

submission &

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi

University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi
TU Darmstadt, Germany

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be

formally.a Yt e e ver,
legag \de
SGX S.
Forn X
legacy .me

memory-corruption vulnerabilines that plague legacy
software are also very likely to occur in those complex

92

Breaking Fine-grained ASLR

Loader

Program
binary

Randomized
code

code_unitl:

jmp -

code_unit2:

jmp 7

code_unit3:

jmp -

code_unit2:

Jmp P

code_unitl:

code_unit3:

jmp

jmp -

93

Attacking Randomization Process

Side-channel observations

1> 3 (A[1])
2 - 4 (A[2])
3 > 1(A[3])
4 - 2 (A[4])

Memory read

Memory write

I
I
: Address

1
: 1 A[1] ~~~~~ ”’,‘v
) Al2] .~ P8 ¥ 2
I 3 A[3] - S>3 A3
I ”¢ ~~NA
1 4] A4 - 4
I
! 1-> A[1]
: 2> A[2]
| 3> A[3]
: 4 - A[4]
I

A[3]

Al4]

A[1]

A[2]

1-> A[3]
2 > Al4]
3> A[1]
4 - A[2]

SGX-Armor: Obfuscating
Randomization via Oblivious Swap

Side-channel observations

|
i
1 Address
St BT
1535153 (Swap) i N
2>4->2->4 (Noswap) : 3 A[3]
14l A4
|
Swap or not !
reveals the same | | ~._ Bit=1
I SAC T
patterns | _p><L
I -~
|

Memory read

Memory write

Oblivious swap

~

-

S

w1 A[3]
) Al2]
% 3 A[1]
e Y

~~~~ABIt = O’,—V
—"’---NN“i




Oblivious Swap Primitive

1 # swap(al, az, b) 1 # oswap(al, az, b)
2 # %rsi, %rdi, %edx 2 # %rsi, %rdi, Xedx
3 swap 3 oswap

4 cmpl $0x1, %edx 4 movq (%rdi), %rax

5 jne no_swap 5 movq (%rsi), %rcx

6 movq (%rdi), %rax 6 cmpl $0x1, %edx

7 movq (%rsi), %rdx 7

8 movq %rdx, (%rdi) 8

9 movq %rax, (%rsi)
10 10 movq %rax, (%rdi)
11 no_swap: 11 movq %rcx, (%rsi)

12 retq 12 retq

96



SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

Securing ASLR on SGX against Multifaceted
Side-channel Attacks

Paper #233

Abxlmd—lntel Software Guard Extensnom (SGX) allows
security lications to run in isolation, thus protecting
their confidentiality and integrity. SGX protects applications from
all other software on the platform, including the operating system.
However, the trusted computing base of the application still
includes the application code itself, and vulnerabilities in this
code can have the same catastrophic consequences under SGX
as they have elsewhere. Thus, it is desirable to deploy the known
general defense schemes in SGX. In particular, address space
layout randomization (ASLR) has been proposed as a general
way to mitigate vulnerabilities in SGX code.

This paper i the I security chall of
deploying ASLR in SGX-like environments which are subject
to multiple side-channels. An SGX adversary who can observe
the memory accesses of the code running under SGX at cache-
line and/or page granularity may gain enough information to
derandomize even fine-grained ASLR.

Our results include multifaceted side-channel attacks against
SGX-Shield, the only published ASLR system for SGX. One of

protect entire classes of vulnerabilities from being exploited
highly desirable. Techniques such as control-flow integrity

(CFI) [6], address space layout randomization (ASLR) [61],

data execution prevention (DEP) [8], and stack canaries [20] are
widely deployed in mass-market commercial systems and have

kept countless bugs from becoming exploitable vulnerabilities.

Despite the undeniable benefits of these generic defenses,

their deployment in TEEs is, at best, incomplete. The reason

lies in the additional challenges posed by the TEE environment.

Some of the defenses such as CFI or stack canaries are

compiler-based and can be dfunl:.ssly deployed into TEEs.

However, other dclen\u require system support lh.nl is not
readily available in
is the focus of thj
operating system
However, in the
attacker. SGX-SI
loader into the enc

submission &

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi

University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi
TU Darmstadt, Germany

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be

formally.a Yt e e ver,
legag \de
SGX S.
Forn X
legacy .me

memory-corruption vulnerabilines that plague legacy
software are also very likely to occur in those complex

97



The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti Lucas Davi
University of Padua, Italy University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi

TU Darmstadt, Germany
I l O ‘ I Abstract si e

Intel Software Guard Extensions (SGX) isolate security-
critica

In the
minimal

In this paper, we pre xplok
against SGX that do not require any encl:

 Similar to Signal Oriented Programming
* SGX has ORET/CONT gadgets in SDK

@ Payload prep.

e Find gadgets
e Design gadget chain

Attack Runtime

Fake stack ORET+CONT loop

4 ™\ F?:?oe;c. —( Gadget 1
Gadget _- =0
-~ - ake exc.
- - - -1 2
R 1A info2 —»( Gadget
T Fake exc.
A
03 [ Gadget 3

Y

@ Fake structures prep.

e n fake exception infos
e 1 fake stack

Y

@ Attack execution

e Launch first CONT

TN TN T )
N P N B N
Ol
b
_{

98



Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
- e.g., control flow hijacking

* Weak mitigation techniques
- e.g., breakmg ALSR




Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;



Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;

struct usbdevfs connectinfo {
.devnum =1,
Slow =0,

5



Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;

devnum (4 bytes) slow (1 byte)

struct usbdevfs connectinfo {
.devnum =1,
Slow =0,

5



Uninitialized Padding Problem

BN -

devnum (4 bytes) slow (1 byte)

(C—11=3)

struct usbdevfs connectinfo {
.devnum =1,
Slow =0,

5



DEADBE

devnum (4 bytes)

slow (1 byte)

7N )

Uninitialized Padding Problem

UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee
School of Computer Science, Georgia Institute of Technology

ABSTRACT

The aperating system kerme] is the de facio trusted computing hise
lor mesl computer sysicis, Toscoure the O kemel, many socunly
mechinizms, &g, EASLE and StockGuand, have been incrensingly
deployed todelend agamnst alacks (eog., ode reuse sitack ). How-
ever, the elfectveness ol these prolecions las baen proven o b
inaclegunte—there are mony infermation lenk suolnerobilitics inthe
kemel to leak the randomized poanler oF canary, thus By passing
EASLE nnd StackGumrd, Cher sensitive data in the kernel, such ns

L. INTRODUCTION

A the de Tacto trusted comgutiing base (TCB) of computer sys-
iems, the operting system (05) kemel hos always been a prime
targed lor atlackers. By compromisimg the Kemnel, stiackers cui es-
calme their privilege o sieal sensitive dolain the system ond congrd
the while compaser. There ore theee mnin approaches 10 launch priv-

ilege escalabion alacks: 1) direct ¢
CCS’'16

attacks [17]; nnd 3 codle reuse ati
Prevenbion) protection has been &




Ecall/Ocall: EDL Interface for SGX

e/ocall_test_struct( );

If there is a padding issue in , it
leaks (or inject) potentially sensitive data
(e.g., a private key like HeartBleed)



Ecall/Ocall: EDL Interface for SGX

untrusted {

2s.CR] 25 Oct ¥

e an isolaed execution environment. known as an
enclave, lor a user-level process 1o maximize its con-
fidentiality and imegrity. In this paper, we study how
uninitialized data inside a secure enclave can be leaked
via structure padding. We found that, during ECALL and
OCALL. proxy lunctions that are automatically generated
by the Intel SGX Software Development Kit (SDK)
fully copy structure varables from an enclave 1o the
normal memaory toretum the result of an ECALL function

and to pass inpui parameters to an OCALL function. 1f the
loo maddlc e kisas ssalalilallcad

st ainas ssralablas sscdala

Crevrria fnstinete of Technology

trusted functions {(e.g.. system calls), Their any other
sllempls W execule untrusted functions (e.g.. jumping
intor mon-enclave code) result in faults.

Intel SGX Software Development Ko (SDK) s
shipped with a ool called Edgersr [1] that sutcmati-
cally and securely generated code for ECALL and OCALL
mterfaces,  Although SGX enclaves can sccess both
EPCs and normal memory, non-enclave applications

_ Thus. all imput

can only access the normal memme
and owtput values for th
berween them need o
ory first and then copied
caller laer. The Edperfr




DEMO: SGX Bleed POC

> i

107

https://github.com/sslab-gatech/unisan



https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan

mplication 1: Using

anguage doesn’t solve the problem

Rust SGX SDK

Rust SGX SDK helps developers writg

108



Implication 2: Using K= aatil=eh
C compilers doesn’t help neither

g b Ds “ake u unsof’ “-dvalues

109



New Attack Vectors

* Page table attack

* Branch shadowing attack

* Rowhammer against SGX

e L1 terminal fault against SGX (i.e., Foreshadow)



New Attack Vectors

* Page table attack
- e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
- e.g., freezing machines

* L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)



Page Table Attack
controlled-channel attack

* Page level access pattern = reveal sensitive info.
(e.g., page faults, page access bits, ...)

2015 1EEE Sympaosium on Security and Privacy

Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems

Yuunzhong Xu Weidong Cui Marcus Peimndo
The Ulniversily of Texar @ Awstin Micmsoft Research Micisoll Research
W O o e e el Wil i pnicrar ot com e e B et com

Absrraci—The presence of large numbs
abilities in popular Feasture-rich comamesd
has Insplred o long line of work en exel

SIS RS i g s

Telling Your Secrets Without Page Faul Original
Stealthy Page Table-Based Attacks on Enclaved

(b)

Jo Van Bulck Nico Weichbrodt
imec-DistriNet, KU Leuven IBR DS, TU Braunschweig IBR
Jo.vanbulck@cs.kuleuven.be weichbr@ibr.cs.tu-bs.de ke

Frank Piessens Raoul Strac
imec-DistriNet, KU Leuven imec-DistriNet, K1
[frank.piessens @cs.kuleuven.be raoul. strackx@cs. kuleuven. be

Abstract ware to make it
applications wi

Protected module architectures, such as Intel SGX, en-
able strong trusted computing guarantees for hardware-
enforced enclaves on top a potentially malicious operat-
ino evetem However ench enclaved syacntion environ-

hardware preve
ing or writing a

112



DEI\/IO Page Fault Attack

lllllllllllllllllllllllllllllllllllllllllll




Defense: T-SGX

* Using Intel Transactional Synchronization Extension
(TSX) to isolate page faults inside SGX

T-SGX: Eradicating Controlled-Channel Attacks
Against Enclave Programs

Ming-Wei Shih'*, Sangho Lee!, and Tacsoo Kim Marcus Peinadao
Microsoft Rescarch

Greorgia Institute of Technology
marcuspe i microsoll.eonm

| g wershinh, sangho, taesoo P gatech,edu

Absfraci—Inbel  Soltware Guard  Extensions (SGX) 5 a [. IMTRODUCTION

hardware-based trusted execulion environmenl {TEED thal en-

Hardware-based trusted executn environments | 1EEs)

ables secure execulion of a program in an isolated environ-

ment, an sackiee, SGX handware profects the running enclave have become one of the most

againsl malichows solltware, including an operating system (CK5), vanous securily Lheemts, melud )

a hypervisor, and even low-level Grmwares, This sirong security kel |.-:|L|1I-::-|I:~.-I1:|r\-:lv..|.r|.- Trajans N DSS 17




Key |dea: TSX |solates Faults!

* Unexpected side-effects (see, DrK [CCS’16])
* Any faults - invokes an abort handler

unsigned status;

// begin a transaction
if ((status = _xbegin()) == _XBEGIN_STARTED) {
// execute a transaction

// atomic commit Breaking Kernel Address Space Layout Randomization
_xend(); with Intel TSX
} else {

Yeongjin Jang, Sangho Lee, and Taesoo Kim
[{}] (/ (/ d b{JI‘ L School of Computer Science, Georgia Institute of Technology
11}

|
2
g
4
5
6 [code]
;
8
O

{yeongjin.jang, sangho, taesoo}@gatech.edu

Windows Vista 0S5 0OSX 108 L 314
ABSTRACT CernelUser space

User-space  Kernel-space Kernel-space

Kernel hardening has been an important topic since many applica-
tions and security mechanisms often consider the kernel as part of
their Trusted Computing Base (TCB). Among various hardening
techniques, Kernel Address Space Layout Randomization (KASLR)
is the most effective and widely adopted defense mechanism that
can practically mitigate various memory corruption vulnerabilities,
such as buffer overflow and use-after-free. In principle, KASLR
z 2 G5 3 G S




A Strawman Solution

* Protect the entire program with TSX!

Enclave Program

Page fault

abort

116



Challenge: Not Progressing!

1) Timer interrupt (i.e., external faults)
2) False TSX aborts (e.g., capacity)

OS Timer Enclave Program

CRELL):

117



Approach: Smaller Execution Units

1) Execution time analysis

OS Timer

2) Cache analysis

Enclave Program

(R Tas):

IIIII)

118



This design still leaks information

|

Page A

Page B

Execution Blocks

XBEGIN
N
N
N
N
N

TSX instructions are no
protected

?

Page A

Page B

\

119



Solution: Springboard

All transactions begin and end on the
springboard, so attacker can only observe
page fault on the springboard

Execution Blocks

Springboard page

Page A

Springboard page

Page fault

-
-
-
T-a

{ Leak only single page }

Page B

(already known to attackers)!

120



Design of T-SGX (Compiler)

Enclave
/  entry point )
Host > @ execution

mov entry, rl5
program push rbp entry

f‘:_- Jmp Degn mov rax, rbx
©® EENTER (sprmgboard (R-X)
next:  xend()
begin: xbegin{}/‘!’-\ P&?VIEEII. r15
jmp rl5 - Jmp
end: xend() . I EB1

jmp rl5 »
,[. abort handler mw EB2, r15
d jmp next

® abort Y

EEXIT/AEX

User space N

Kernel space @ terminate (or interrupted)

Exception , |
handler transactional regions
—» control flows

121



T-SGX: Eradicating Page Faults

* Technique to avoid false aborts (e.g., capacity)
* Security analysis - springboard design
e Performance optimizations

50% CPU, 30% Mem overheads

"“'nIIIJ"';IJ'i']Tj

(\
(\
Q, ( (Q .\ & \2\\) <<\Q/
< o e 52 o
& & \s s he 122



DEMO: T-5GX

mingwei@sgx3:~/workspace/t-sgx/test/sgx-pf-attack$ I

https://github.com/sslab-gatech/t-sgx 123



https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx

New Attack Vectors

* Page table attack
- e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
- e.g., freezing machines

* L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)



New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

* Observation:
* Branch history is shared between SGX and non-SGX

— Execution history of an enclave affects the
performance of non-SGX execution



New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing
Sangho Lee” Ming-Wei Shih™ Prasun Gera' Taesoo Kim' Hyesoon Kim' Marcus Peinado*

T Georgia Institute of Technology
* Microsoft Research

Abstract

Intel has introduced a hardware-based trusted execution
environment, Intel Software Guard Extensions (SGX),
that provides a secure, isolated execution environment,
or enclave, for a user program without trusting any un-
derlying software (e.g., an operating system) or firmware.

we need either to fully trust the operator, which is prob-
lematic [16], or encrypt all data before uploading them
to the cloud and perform computations directly on the
encrypted data, The latter can be
phic encryption, which is still s
preserving encryption, which is
when we use a private cloud or

126



|dea: Exploiting New HW Features

* Intel Skylake (and Broadwell) introduced two new
debugging features that report prediction results

 Last Branch Record (LBR)
* Intel Processor Trace (PT)

— But only for non-enclave programs
(or enclave on a debug mode)



Our Approach: Branch Shadowing

enclave

Shadow replica

non-enclave

129



Our Approach: Branch Shadowing

enclave

([ J
e 030010 are mapped onto the

same branch prediction buffer

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je = jmp)

BTB/BPU

non-enclave

ff
jmp OxFF10 artect

130



Our Approach: Branch Shadowing

enclave

. are mapped onto the

je 0x0010 . L
same branch prediction buffer

| jmp OxFF10 ‘

Intel PT/LBR

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je = jmp)

 Monitor with LBR/PT and
extract branch prediction
results indirectly

BTB/BPU

non-enclav

131



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

- 11 Which one would be the next instr.

inc ox < || to be predicted?

Ll:dec rbx<=

132



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

;mo S0, rax
Make this prediction if
1) there is no history or

1:5 rox
raee 2) the branch has not been taken

133



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

cmi S0, rax

inc rbx

L1:dec rbx<=* |Vlake this prediction if
the branch has been taken

Conditional behavior - Reveal history
How can we know which branch was taken?

134



Branch Prediction vs. Misprediction

* Measure branch execution time

* Take longer if a branch is incorrectly predicted
(e.g., roll back, clear pipeline, jump to the correct target)

| Prediction | wisprediction__

RDTSCP 94.21 . 13.10 ;20.61 806.56

4
PTCYC  59.50 %\ 1444 9064  /191.8
U
LBRcycle 25.69 %9.72 . 3504 / 10.52
\\ ,,/ ll
Ny /
N/ 1

—> Observable difference but high measurement noise



Exploiting New HW Features

* Intel LBR/PT explicitly report the prediction result,
but only taken branches (w/ limited buf size)

* Approach:
* Translating all cond. to be taken in the shadow copy
* Synchronization b/w enclave and its shadow



Example: Inferring Cond. Branch

Enclave
4 cmp $0, rax
0x00530: e OxOO5f4ﬁjﬁ

0x00532: inc rbx

(0x005f4: dec rbx l
E

137



Example: Inferring Cond. Branch

Enclave Shadow copy
4 cmp SO, rax\ aligned cmp rax, rax
0x00530: je 0x005f4 -’-'-;-[Z;i;\f--------'>0xff530: je Oxffbf4r=
0x00532: inc rbx g 0xff532: nop
(0%005£4: dec rbx J Oxff5f4: nop

* Prepare a shadow copy w/
* Colliding conditional branches

138



Example: Inferring Cond. Branch

Shadow copy

aligned

je 0x005f4 r.:'lz;:.x;--------.

Enclave
/
0x00530:
0x00532: inc rbx
\9x005f4: dec rbx

I‘ll
¢ 1
Sg=="1 1
N [
[

L]

[

[

L]

[

[

'll

.’

( 4

*0x££530:
Oxff532:

Oxffb5f4:

/-"

je Oxff5f4

nop

nop

* Prepare a shadow copy w/
* Colliding conditional branches
* Always to be taken (to be monitored by LBR)

139



Example: Inferring Cond. Branch

Enclave / BPU/BTB \
4 cmp 50, rax —
0x00530: je 0x005f4 i ______________ (s not taken
0x00532: inc rbx g—'«‘;i OR
|
T N .
\0%005£4: dec rbx l 0x*7530 taken

140



Example: Inferring Cond. Branch

Enclave 4 _BPU/BTB )
a cmp $0, rax "
0x00530: je 0x005£4 &R mmme""" rL_9x/'530\| not taken
0x00532: inc rbx 1'_ OR
_ ........ * 0x**530 taken
kOxOO5f4. dec rbx < \ \ N—
‘x N
‘[ e ] Indexed/tagged by
lower 31 bits

141



Example: Inferring Taken Branch

Shadow code

BPU/BTB cmp rax, rax
0x**530 taken Fr-=------- +0x£ff530: je Oxff5f4

O0xff532: nop
7
{ LBR }
7’

,0xff5f4: nop




Example: Inferring Taken Branch

Shadow code

BPU/BTB cmp rax, rax
0x**530 taken Ft-------- —+0xf£f530: je Oxff5f4

O0xff532: nop
LO0xff5f4: nop Correct!
7
{ LBR }

 BPU/BTB correctly predicts the execution of the
shadow branch using the history

143



Example: Inferring Taken Branch

Shadow code
BPU/BTB cmp rax, rax

Ox**530 taken o s o e e -'OXff530: je OXff5f4

O0xff532: nop
LBR
Oxff530| Oxff5f4 | Predicted

* If LBR reports:
* Predicted - The target branch has been taken

LO0xff5f4: nop Correct!

144



Example: Inferring Not-taken Branch

Shadow code
BPU/BTB cmp rax, rax

Ox**530 not taken o s o e e -'OXff530: je OXff5f4

O0xff532: nop
LBR
Oxff530| Oxff5f4 [Mispredicted

* If LBR reports:
* Predicted - The target branch has been taken
* Mispredicted - The target branch has NOT been taken

,OXff5f4: nop Wrong!

145



Enabling Single Stepping!

* Check branch state as frequently as possible to
overcome the capacity limit of BPU/BTB and LBR

* e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake)

* Increase timer interrupt frequency
* Adjust the TSC value of the local APIC timer

e Disable the CPU cache
* CD bit of the CRO register

~50 cycles

~5 cycles



SGX-Step: Open Source Framework

* Local APIC
e Userspace mapping for PTE

) IRQ Handler IDT Lookup o aree @ IRQ Handler
mov %eax, (tsc2)
® a8 (=
iretqg
Enclave () IRa k | @ rer
/_ \ "'-,_- ( -\
if secret do e
| —  instl1 <«— ~movl $TMR,0xfee00380
1 rdtsc SGX-Step: A Practical Attack Framework for Precise
Seasis @ ERESUME - [: _ :I Enclave Execution Control
inst2 mov weaX, (Ls5Cl JoVanbulek Frank Piessens Raoul Strackx
e:’]_c-_'_]_ Protectes ule el G ld the
- h‘ / o
(E DBGRD) 2
[ /dev/sgx-step {optlonaIIOCTL) ...... o Arhgh b oo

https://github.com/iovanbulck/sgx-step



https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step

Example: Attacking RSA Exp.

/* X = AE mod N */

mbedtls mpi_exp mod(X, A, E, N, RR) { Slldlng-WlndOW
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;
if (ei == 0 && state == 1)

mpi montmul (X, X, N, mm, &T);

148



Example: Attacking RSA Exp.

/* X = AE mod N */

mbedtls mpi exp mod(X, A, E, N, RR) ({ S||d|ng'W|ndOW
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

Taken only when ei is zero

mpi montmul (X, X, N, mm, &T);

149



Example: Attacking RSA Exp.

/* X = AE mod N */

mbedtls mpi exp mod(X, A, E, N, RR) ({ S||d|ng'W|ndOW
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

Taken only when ei is zero

mni montmil1(X. X. N. mm. £T) :

* The probability that the two branches return
different results: 0.34 (error rates)

* The inference accuracy of the remaining bits: 0.998

* We were able to recover 66% of an RSA private
key bit from a single run.

e <10 runs are enough to fully recover the key.



DEMO: Branch Shadowing Attack




What Else?

libc/strtol Convert astring  The sign and length of an
into an integer input
Hexadecimal digits
libc/vfprintf Print a formatted The input format string
string

LIBSVM/k_function Evaluate a kernel The type of a kernel (e.g.,
function linear, RBF)
The number of features

Apache/lookup _bui Parse the method HTTP request method (e.g.,
Itin_method of an HTTP GET, POST)
request



Defense: Flushing Branch States
(Hardware)

* Clear branch states during enclave mode switches



Defense: Flushing Branch States
(Hardware)

* Clear branch states during enclave mode switches

 How much overheads (depending on frequency)?

* Simulation: Flushing per >10k cycles incurs
negligible overheads

m 100

m 1k

W 10k
100k

m1M

m 10M
bzip2 gce mcf  h264ref omnetpp astar gamess namd sphinx3 GMEAN

154



Mitigation: Obfuscating Branch
(Software/Compiler)

* Set of conditional/indirect branches >
a single indirect branch + conditional move instructions

* The final indirect branch has a lot of targets such that it
is difficult to infer its state.

block0:mov $block1, r15
cmp $0, $a

block2, r15 : ' .
block0: cmp $0, Sa S | Claeoggers ranpolie
blockL: chkglgﬁ( 5 block1: <cod§él> k;“-l-.S.:\;/ZZl:jmp block1.j

5 mov $block5, r
jmp block5 block1.j: jmp zz2 3
block2: cmp $0, $b block2:mov $block3, r154\
je block4 cmp $0, $b . zz2:jmp block2.j
block3: <code2> cmov $block4, r15 /
jmp block5 block2.j: jmp zz3 ,
block4: J<cgde3> block3: <code2> \ z3:jmp block3.j

mov $block5, r15

block3.j: jmp zz4 LA _
block4: <code3> T SS»2z4:jmpq *r15

block5: <code4>

block5: <code4>



Example: Branch Obfuscation

LO: mov SL1,rl5

LO:cmp $0, $a cmp $0,8a
cmov $L2,rl5
= EE)  w o
«-=4  transformation L'1:
L2:

Ll:..
L2:.. > ..

i

i 4——:

71 L-(mpql xr15

Can identify whether L1 or L2 Can identify whether Z1 has been
has been executed executed but not its target

156



Mitigation: Obfuscating Branch
(Software/Compiler)

* LLVM-based implementation
* Overhead (nbench): <1.5x
* Just mitigate the attack, don’t solve it completely



New Attack Vectors

* Page table attack
- e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
- e.g., freezing machines

* L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)



Controlling Bit Flipping in DRAM

e Reported random bit flippings happening in DRAM

 Rowhammer by Google Project Zero (2015)

* Further enhanced by many researchers

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee'
Donghyuk Lee! Chris Wilkerson> Konrad Lai  Onur Mutlu!

!Carnegie Mellon University ’Intel Labs

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology
scales down to smaller dimensions, it becomes more difficult
to prevent DRAM cells from electrically interacting with each
other. In this paper, we expose the vulnerability of commodity
DRAM chips to disturbance errors. By reading from the same
address in DRAM, we show that it is possible to corrupt data
in nearby addresses. More specifically, activating the same
row in DRAM corrupts data in nearby rows. We demonstrate
this phenomenon on Intel and AMD systems using a malicious
program that generates many DRAM accesses. We induce
errors in most DRAM modules (110 out of 129) from three
major DRAM manufacturers. From this we conclude that
many deployed systems are likely to be at risk. We identify

disturbance errors, DRAM manufacturers have been employ-
ing a two-pronged approach: (i) improving inter-cell isola-
tion through circuit-level techniques [22, 32, 49, 61, 73] and
(ii) screening for disturbance errors during post-production
testing [3, 4, 64]. We demonstrate that their efforts to contain
disturbance errors have not always been successful, and that
erroneous DRAM chips have been slipping into the field.!

In this paper, we expose the existence and the widespread
nature of disturbance errors in commodity DRAM chips sold
and used today. _Amana 120 DR AM modulec swe analuzad
(comprising 2
errors in 11(
manufacturg
nerable, whi
rors in the fic:
more advanced generations ol process technology. we show

Project Zero

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges

Posted by Mark Seaborn, sandbox builder and breaker, with contributions by Themas Dullien, reverse engi

[This guest post continues Project Zero's practice of promoting excellence in security research on the Proje
blog]



SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown
 Rowhammer (SW) can trigger the violation!

DRAM

(, —_— )

. EPC — Int Tree [~ ADRAMBANK
Root : : "

(e Jer) ﬁ; i& .

EPC — Enclaves J \_ Y,

Row Buffer




SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown

 Rowhammer (SW) can trigger the violation!

void dbl_sided_rowhammer(uint64_t *pl,
while(n_reads-- > 0) {
// read memory pl and p2
asm volatile("mov (%0), %¥¥rl1®;" ::
asm volatile("mov (%0), %¥¥rl1l;" ::
// flush pl and p2 from the cache
asm volatile("clflushopt (%0);" :1
asm volatile(“"clflushopt (%0);" :1
}
chk_f£flip(Q);
}

uint64_t *p2, uint64_t n_reads) {

"r"(pl) :
“r"(p2) :

"memory") ;
"memory"):

SGX-Boms: Locking Down the Processor via Rowhammer Attack

Yeongjin Jang’
Oregon State University
yeongjin.jang@oregonstate.edu

Sangho Lee
Georgia Institute of Technology
sangho@gatech.edu

Abstract

Intel Software Guard Extensions (SGX) provides a strongly isolated
memory space, known as an enclave, for a user process, ensuring

confidentiality and integrity against software and hardware attacks.
Even the operating system and hypervisor cannot access the en-

clave because of the hardware-level isolation. Further, hardware
attacks are neither able to disclose plaintext data from the enclave
because its memory is always encrypted nor modify it because its

integrity is always verified using an integrity tree. When the proces-

sor detects any integrity violation, it locks itself to prevent further
damages; that is, a system rebool is necessary. The processor lock

seems a reasonable solution against such a powerful hardware at-

tacker; however, if a software attacker has a way to trigger integrity

Jaehyuk Lee
KAIST
jaehyuk.lee@kaist.ac.kr

Taesoo Kim
Georgia Institute of Technology
taesoo@gatech.edu

ACM Reference Format:

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-BoMs:
Locking Down the Processor via Rowhammer Attack. In SysTEX'17: 2nd
Workshop on System Software for Trusted Execution , October 28, 2017, Shang-
hai, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3152701.3152709

1 Introduction
Trusted Execution E:
enable secure compul
program without rely

geer  SysTEX'17

Extensions (SGX) [18] is a commodity hardware-based TEE imple-




About Integrity Violation

* SGX assumes HW/physical attackers
* Integrity violation - drop-and-lock policy

* Implications:
* DoS: Freezing an entire machine (cloud provider)
e Require power recycle (not via normal methods)



SGX-Bomb Remarks

 Easier to trigger than normal rowhammer
i.e., a single, arbitrary bit in EPC region (128MB)

* Harder to detect
* Not notifiable in terms of resource usages

* Popular defenses (e.g., in Linux) rely on PMU (e.g., cache
misses) that is not possible for enclaves



DEMO: SGX-Bomb

SGX machine

normal state)

Press

$ Ctrl+Alt+Del

://github.com/sslab-gatech


https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb

Defenses against SGX-Bomb

* Use non-faulty DRAM!

e Use LPDDR3 that has Pseudo-TRR (Target Row Refresh)
e ECC can’t completely block (easy to trigger multiple bits)

e Potential mitigations:

* Higher refresh rate (2x)
* Using Uncore PMU
 Row-aware memory allocation for EPC regions



New Attack Vectors

* Page table attack
- e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
- e.g., freezing machines




L1TF: L1 Terminal Fault

Not present & L1D

enclavel enclave?2

uint8_t =xoracle,
uint8.t xsecret_ptr)

uint8_t v = *secret_ptr;
v = v % 0x1000;
uint64_t o = oracle[v];

}

Same address space

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient

5 % -of-Order Ex ion
Transient Out-of-Order Execution OulEev?siouQ.O((iAeugusl xffol}g
Jo Van Bulck!, Marina Minkin?, Ofir Weisse?, Daniel Genkin®, Baris Kasikci®, Frank Piessens!, Ofir Weisse®, Jo Van Bulck', Marina Minkin?, Daniel Genkin®, Baris Kasikci®, Frank Piessens',

Mark Silberstein®, Thomas F. Wenisch?®, Yuval Yarom®, and Raoul Strackx' Mark Silberstein?, Raoul Strackx', Thomas F. Wenisch?, and Yuval Yarom*

Yimec-DistriNet, KU Leuven, *Technion, *University of Michigan, * University of Adelaide and Yimec-DistriNet, KU Leuven, *Technion, 3 University of Michigan, * University of Adelaide and

Data61 Data61
Abstract tion requires different computational tasks belonging to
Abstract distrusting enclaves with a minimal Trusted Computing I security domains to be isolated from each other
Base (TCB) that includes only the processor package and In January 2018, we discovered the Foreshadow transient  and prevented from reading each other’s memory. In

execution attack (USENIX Security’18) targeting Intel
SGX technology. Intel’s subsequent investigation of our
attack uncovered two closely related variants, which we
collectively call Foreshadow-NG and which Intel refers
to as L1 Terminal Fault. Current analyses focus mostly
on mitigation strategies, providing only limited insight
into the attacks th Ives and their | The

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-
world industry applications, take advantage of the strong
hardware-enforced confidentiality and integrity guaran-

microcod s

modern computer architectures this is typically achieved




Impacts of LITF on SGX

* Broken isolation guarantees

* Distrustful remote attestation, thus ecosystem

* Leaking secrets from architectural enclaves
(e.g., quoting/launching)

e Emulator vs. SGX



Defense: L1TF against SGX

* Immediate steps (via microcode update):
* Flushing L1 on EEXIT/AEX
* Disabling hyperthreading

* Q. What should we do to address this issue more
fundamentally?

* Q. What’s the right way to prevent further issues?



Outline

* Threat model / assumption
e Traditional attack vectors
* New attack vectors

* On-going approaches

* Summary

170



On-going
(collaborat

Projects for Defenses

ing with MS and Intel)

1) Multifaceted side-channel attack (under review)

2) Hardware-based fault isolation (on-going)

- Seeking a better HW abstraction to contain faults
(i.e., ideal interface to replace ad-hoc TSX)

3) Loading-time synthesis (on-going)
- Addressing side-channel at loading time, depending on

the execution environment at end points
(i.e., compositing SW-based schemes without conflicts)

171



PRIDWIN: Load-time Synthesis

Local Remote

Enclave

1011 1011 1011 Page-level
m 0100 _— * 0100 0100 iSLR
Program Program & Program & Program enabled
specifications specifications

T-SGX + Page-level ASL

TSGX+

Page-level TSX is not supported ¥
ASLR




PRIDWIN: Load-time Synthesis

Specifications & Constraints

T-SGX

Target: P -table attack

Priority: High

Requirement: TSX

Instrumentation:

- Insert XBEGIN, XEDN at each block

Page-level ASLR

Target: Page-table attack
‘Priority: Lom

Requirement: N/A
Instrumentation:
- Break program into 4-KB pages

Hardware configuration
TSX support: No

Load-time synthesis

Constraints
solver

—

>
/

A

1011
0100

Program +
Page-level
ASLR

173



PRIDWIN: Load-time Synthesis

Compller B
. o100f"
~ WASM

Program
source

Defense
specifications

Multi-stage Loader Enclave
Initialization Synthesis Generation l, )
A
1011
> 0100
Protected
executably
|

\4

Hardware
specifications



Summary ( inter)

* Intel SGX is a practical, promising building block to
write a secure program

* Intel SGX has unusually strong threat model,
opening up unexpected attacks

* Today’s Talk: Recent Attack/Defense of Intel SGX

175



Summary intel.

* It’s not future technology; it’s already everywhere!

Why Azure  Solutions  Prc ts Documentation Pricing Training Marketplag

Blog > Virtual Machines

Introducing Azure confidential
computing

Posted on September 14, 2017

o Mark Russinovich, CTO, Microsoft Azure

I HOME  DEVELOPER »
DASISLAR vy Oou o HOME  DEVELOPERS  TEAM

BLOG PRESS WE'RE HIRING

i Fortanix

- NrruIwanna

Creating a privacy-first sloud computing »

platform on blockchain:

We put software and hardware securlty into billions of devices. 100+ security patents.
30+ papers in top conferences. USENIX, CCC; and Blackhat p ers.

Join owr”priv
Ready to test Fortanix SDKMS beta?




