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   Operating Systems, Systems Security, Bug Finding, etc 
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Our Group’s Research Interests 

• Bug finding:  
e.g., static analysis, fuzzing, symbolic execution, etc. 
 

 

• System security: 
e.g., system updates, Intel SGX, sandboxing, etc. 

 

• System scalability: 
e.g., file system, graph processing, scalable lock, etc. 
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Our Group’s Research Interests 

5 https://gts3.org/pages/cves.html 
 

(> 300 bugs in Linux, Firefox, OpenSSL, etc.) 
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DEFKOR00T: Won DEF CON CTF’18 
(DEFKOR + R00tmentary) 
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https://software.intel.com/en-us/sgx/academic-research 
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Outline 

• Threat model / assumption 

• Traditional attack vectors 
• Cache-based side channel 

• Memory safety 
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• Uninitialized padding in EDL 

 

• New attack vectors 

• On-going approaches 

• Summary 
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Outline 

• Threat model / assumption 

• Traditional attack vectors 

• New attack vectors 
• Page table attack 

• Branch shadowing attack 

• Rowhammer against SGX 

• L1 terminal fault against SGX (i.e., Foreshadow) 

 

• On-going approaches 

• Summary 
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https://foreshadowattack.eu/


Revisited: Intel SGX 101 

• “Practical” TEE implementation by Intel 

• Extending x86 Instruction Set Architecture (ISA) 

– Native performance 

– Compatible to x86 

– Commodity (i.e., cheap) 

Supermicro Server Lenovo T560 Dell OptiPlex 5040 



Revisited: SGX for Cloud 
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Cloud provider (untrusted) 



Revisited: SGX for Cloud 
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Cloud provider (untrusted) 



Revisited: SGX for Cloud (Isolation) 
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Cloud provider (untrusted) 



Revisited: SGX for Cloud  
(Remote attestation) 
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Cloud provider (untrusted) 

Client 

EPID 

by developer 



Revisited: SGX for Cloud  
(Remote attestation) 
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Cloud provider (untrusted) 

Client 

EPID 

by developer 



SGX Ecosystem for Attackers 
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:  Trusted components (i.e., where we should attack) 

:  Attacker’s capabilities (i.e., what attackers can do) 



Our Initial Interests as Attacker 
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Not interesting  
(unknown, not popular) 

Not interesting  
(non technical issues) 

Attacking applications running on enclaves 
(i.e., breaking their isolation and confidentiality) 
with the capabilities of the cloud provider 



Summary: Intel SGX 101 

• Two important design goals: 
• Performance (i.e., native speed, multithread) 

• General purpose (i.e., x86 ISA) 

 

• Two important security primitives: 
• Isolated execution → confidentiality, integrity 

• Remote attestation → integrity 

21 



Isolated Execution 

• Protect enclaves from untrusted privilege software 

• Small attack surface (TCB: App + CPU) 

22 
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Isolated Execution 

• Protect enclaves from untrusted privilege software 

• Small attack surface (TCB: App + CPU) 
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SGX’s Threat Model (very strong!) 

● All except the core package can be malicious 
● Device, firmware, … 

● Operating systems, hypervisor … 
 

● DoS (availability) is naturally out of concern 

● Intel excludes cache-based side-channel  
(due to performance) 

 



What if Enclave is Compromised? 

• Leak sensitive information 

• Prevent attackers from being audited/analyzed 

• Permanently parasite to the enclave program 
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What if Enclave is Compromised? 

• Leak sensitive information 

• Prevent attackers from being audited/analyzed 

• Permanently parasite to the enclave program 

26 

Protected? 
by SGX 

Enclave 
 
 
 

No access  
     from  
OS/VMM 

Leak secret 

Enclave 
 
 
 

Rootkit 

Enclave 
 
 
 MiTM 

Due to 1) its strong threat model and  
2) consequences of compromises, developing a 
secure enclave program is much more difficult 

than a typical program! 



Demonstrated Post Exploitation 
• Dumping confidential data 

• e.g., memcpy(non-enclave region, enclave, size) 

• Permanent parasite  
• e.g., MiTM on the remote attestation  

• Breaking ecosystem 
• e.g., leaking attestation keys for Quoting enclaves 
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Thinking of SGX Usages 
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User 

Data 

Company 

DRM X 
e.g., prevent reverse engineering  
(or DRM data) 



Traditional Attack Vectors 

• Cache-based side channel 

• Memory safety 

• Weak mitigation techniques 

• Uninitialized padding in EDL 
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Traditional Attack Vectors 

• Cache-based side channel 
→ e.g., inferring a private key 

• Memory safety 
→ e.g., control flow hijacking 

• Weak mitigation techniques 
→ e.g., breaking ALSR 

• Uninitialized padding in EDL 
→ e.g., leaking security sensitive information 
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Cache-based Side-channel Attacks 
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arXiv’17 

EuroSec’17 

WOOT’17 

arXiv’17 



Cache-based Side-channel Attacks 
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Cache attacks are possible and often, makes it 
“easier” to launch  the attack due to its strong threat 

model (e.g., using PMC) 
 → Known defenses (e.g., coloring ...) 



CS101: Cache Structure 
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CS101: Cache 
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CS101: Cache 
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Basic Idea: Cache Side-channel 
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Real Attack: AES? 

{SubBytes + ShiftRows + MixColumns + AddRoundKeys} x {10, 12, 14} 

Monitoring cacheline access of Lookup Table! 



Known Attack Demonstrations 

• Known cache-based side channel attacks: 
• 2003 DES by Tsunoo et al. (with 226.0 samples) 

• 2005 AES by Bernstein et al. (with 218.9 samples) 

• 2005 RSA by Percival et al. (-) 

• … 

• 2011 AES by Gullasch et al. (with 26.6 samples) 

• … 

• 2017 AES by Ahmad et al. (with 10 samples against SGX) 
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Cache Side-channel (in Cloud) 
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Cache Side-channel against SGX 
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Thinking of SGX Adversaries: 
SGX Makes Cache Attack Easier 

• Accurate intervention (i.e., scheduling/exception) 

• Controlled environment (i.e., OS, hyperthread) 

• Rich information available (e.g., physical mapping, PMC) 

 

43 

arXiv’17 WOOT’17 



Cache Attack is Practical Concern? 

• Yes or no, depending on contexts and applications. 
• Think first: why considering SGX? on cloud? 

 

• Performance (= cache) vs. potential risks! 

• SGX can make the cache attack harder too 
• By leveraging isolation / randomization 

(security by obscurity practical) 
 

→ Intel explictly noted that it’s better to be 
addressed in SW (if you wish) rather than HW (by 
default). 
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Breaking Remote Attestation via 
Cache-based Side-channel Attacks 

45 

IACR’18 



Defense: Cache Attacks 

• Cache oblivious implementation of crypto algos 

• Fine-grained code/data randomization 

• Mitigating via contiguous monitoring (e.g., Varys) 

• Looking for better HW-based solutions!  
(e.g., partitioning/coloring) 

46 SEC’16 ATC’18 



Traditional Attack Vectors 

• Cache-based side channel 
→ e.g., inferring a private key 

• Memory safety 
→ e.g., control flow hijacking 

• Weak mitigation techniques 
→ e.g., breaking ALSR 

• Uninitialized padding in EDL 
→ e.g., leaking security sensitive information 
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Memory Safety Issues 

48 

• SGX is not free from memory safety issues 

• Current ecosystem is built on memory unsafe lang. 

Defense 

SEC’17 SEC’18 



Return-oriented Programming (ROP) 
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 

ret 

dst 



Return-oriented Programming (ROP) 
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 
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ret 

dst 

ret pop rdi; ret 
arg1 
ret 



Return-oriented Programming (ROP) 
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 
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ret 

dst 

ret pop rdi; ret 
arg1 
ret 

ret 

system(arg1) 
arg1 
ret 

e.g., system(“/bin/sh”) 



Typical Requirements for ROP  
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 
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dst 

ret 

system(arg1) 
arg1 
ret 

e.g., system(“/bin/sh”) 

pop rdi; ret 

Code (via reverse 
engineering) 

Need to determine 
the length of payload 



ROP Inside an Enclave 
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 

53 

Code is not visible! 
(e.g., loaded in an encrypted form) ??? 

??? 



ROP Inside an Enclave 
 void vuln(char *input) { 

     char dst[0x100]; 

     memcpy(dst, input, 0x200); 

 } 
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dst 

Code is not visible! 
(e.g., loaded in an encrypted form) 

0x0000 
0x0008 

0x0100 
0x0108 

… 

0x0110 
0x0118 

??? 
??? 

0x0000 
0x0008 

0x0100 

0x0108 

… 

ret 
0x0110 
0x0118 

??? 

SGX doesn’t report RIP 
directly but the 

corresponding page 



ROP in Darkness: Dark ROP 

• Step 1. Debunking the locations of pop gadgets 

• Step 2. Locating ENCLU + pop rax (i.e., EEXIT) 

• Step 3. Deciphering all pop gadgets 

• Step 4. Locating memcpy() 
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Threat Model for DarkROP 

• Know existence of a buffer overflow (i.e., crash) 

• Crashing the enclave arbitrarily times 

• Built with standard libraries (e.g., SGX SDK) 

• Distributed in an encrypted form (like VC3) 
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Step 1. Looking for pop Gadgets 
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0x0000 
0x0008 

0x0100 
0x0108 

… 

ret 
0x0110 
0x0118 

You have a full control over the layout  
of the enclave 



Step 1. Looking for pop Gadgets 
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… 

Rip = 0xff00 
(e.g., crash illegal instruction) 



Step 1. Looking for pop Gadgets 

59 

0x0000 
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Step 1. Looking for pop Gadgets 
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0x0000 
0x0008 

0x0100 

… 

ret 
0x0110 
0x0118 

0xff00 
0xff01 
0xff02 

… 

Rip = 0xff00 
(e.g., crash illegal instruction) 

… 

Rip = 0x0118 
(segfault) 

0x0000 
0x0008 

0x0100 

… 

ret 
0x0110 
0x0118 

pop ???? 
ret 

0xff02 

0x0000 
0x0008 
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… 

ret 
0x0110 
0x0118 

pop ???? 
pop ???? 
pop ???? 
ret 
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Rip = 0x0128 
(segfault) 

0xff30 



Step 1. Looking for pop Gadgets 
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Rip = 0x0118 
(segfault) 

0x0000 
0x0008 

0x0100 

… 

ret 
0x0110 
0x0118 

pop ???? 
ret 

0xff02 

0x0000 
0x0008 

0x0100 

… 

ret 
0x0110 
0x0118 

pop ???? 
pop ???? 
pop ???? 
ret 

0xff30 

0x0120 
0x0128 

Rip = 0x0128 
(segfault) 

0xff02 → pop ?;ret 
0xff30 → pop ?;pop ?;pop ?;ret 
… 

Catalog of pop gadgets 
(unknown args) 



Step 2. Looking for ENCLU 

• ENCLU: an inst. dispatches to various leaf functions 
• rax = 0: EREPORT 

• rax = 1: EGETKEY 

• … 

• rax = 4: EEXIT 

 

62 



Step 2. Looking for ENCLU 

• ENCLU: an inst. dispatches to various leaf functions 
• rax = 0: EREPORT 

• rax = 1: EGETKEY 

• … 

• rax = 4: EEXIT 
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→ Scan code for each “pop????;ret” 

→ If gracefully exit, rip = ENCLU 

0x0000 
0x0008 

0x0100 
pop;ret 

… 

ret 
0x0004 
0x0118 ret ENCLU 



Step 3. Deciphering pop Gadgets 

• EEXIT (ENCLU & rax=4) left a register file uncleaned 
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→ Scan code for all pop gadgets 

→ Check arguments 

0x0000 
0x0008 

0x0100 
pop arg1; pop arg2; ret 

… 

ret 
0x0001 
0x0002 

ret ENCLU 

pop rax; ret ret 
0x0004 



Step 3. Deciphering pop Gadgets 

• EEXIT (ENCLU & rax=4) left a register file uncleaned 
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→ Scan code for all pop gadgets 

→ Check arguments 

0x0000 
0x0008 

0x0100 
pop arg1; pop arg2; ret 

… 

ret 
0x0001 
0x0002 

ret ENCLU 

pop rax; ret ret 
0x0004 

arg1 = 0x0001 
arg2 = 0x0002 

rax = 0x0004 
rsi = 0x0001 
rdi = 0x0002 
… 

Deciphering  
pop? pop? gadget 

Register file 
+ 

pop rsi  
pop rdi  
ret 

= 



Step 4. Looking for memcpy() 

• Identifying memcpy(dst*, valid, 0x10) 
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pop rdi; pop rsi; pop rdx; ret ret 
0xEE00 

ret pop rax; ret 

0x0010 

ret ENCLU 
0x0004 

0xFF00 

ret Varying (looking for memcpy) 



Step 4. Looking for memcpy() 

• E.g., invoking memcpy(0x7ff1000, any valid, 0x10) 
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0x7fff1000: 00 00 00 00 00 00 00 00 00 … 

0x7fff1010: 00 00 00 00 00 00 00 00 00 … 

      …. 

0x7fff2000: 01 02 03 04 05 06 07 08 09 … 

0x7fff2010: 11 12 13 14 15 16 17 18 19 … 

0x7fff1000: 01 02 03 04 05 06 07 08 09 … 

0x7fff1010: 11 12 13 14 15 16 17 18 19 … 

      …. 

0x7fff2000: 01 02 03 04 05 06 07 08 09 … 

0x7fff2010: 11 12 13 14 15 16 17 18 19 … 

Untrusted application memory  



Gadgets Everywhere (e.g., SDK) 



DEMO: PoC Dark ROP 
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Case Study 1: Unsealing Data 

• Unsealing and leaking confidential data  
• i.e., EGETKEY retrieves the hardware key bound to 

specific enclave 
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Untrusted Application 

 Secure Enclave 

RAX Gadget 

RBX Gadget 

RCX Gadget 

ENCLU Gadget 

memcpy Gadget 

 

Shadow_read_sealing_data( ) 

{ 

    ROP_to_egetkey( ) 

    unseal_data ( ) 

} 

 

 Sealing key 



Case Study 2: Hijacking Remote 
Attestation 

• Breaking the Integrity guarantees of SGX 
• MiTM between secure enclave and attestation server 

• Masquerading to deceive remote attestation service 

72 

Emulated Enclave 

 

Secure Enclave 

memcpy  

Gadget 

RAX Gadget 

RBX Gadget 

RCX Gadget 

RDX Gadget 

ENCLU  

Gadget 

RSI Gadget 

RDI Gadget 

RCX Gadget 

Fake_Attestation ()  

{ 

    Compute_DH_key( ) 

    Generate_REPORTDATA( ) 

    ROP_to_copy_parameter( ) 

    ROP_to_get_report( ) 

    Get_Quote( ) 

} 

REPORTDATA REPORTDATA 

REPORT 



Defense: SGXBounds 
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• Addressing spatial memory problems (bound chk) 

EuroSys’17 



Defense: SGXBounds 
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• Addressing spatial memory problems (bound chk) 

• Key idea: an efficient tag representation thanks to 
smaller memory space! 



Defense: SGXBounds 

75 



Done w/ Memory Safety on SGX? 

• SGXBounds is a temporary solution 
• No temporal safety (i.e., UAF) 

• More address space in the future (e.g., large pages) 

 

• What about traditional mitigations (required)? 
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Traditional Attack Vectors 

• Cache-based side channel 
→ e.g., inferring a private key 

• Memory safety 
→ e.g., control flow hijacking 

• Weak mitigation techniques 
→ e.g., breaking ALSR 

• Uninitialized padding in EDL 
→ e.g., leaking security sensitive information 
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SGX Mitigation Checklist 

• Popular mitigation schemes: 
Stack Canary 

RELRO 

DEP/NX 

ASLR/PIE 
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SGX Mitigation Checklist 

• Popular mitigation schemes: 
Stack Canary 

RELRO 

DEP/NX 

ASLR/PIE 
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ecall_pointer_user_check(): 

prologue epillogue 



SGX Mitigation Checklist 

• Popular mitigation schemes: 
Stack Canary 

RELRO 

DEP/NX 

ASLR/PIE 
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Defense: ASLR/SW-DEP inside SGX 

• Popular mitigation schemes: 
Stack Canary 

RELRO 

DEP/NX 

ASLR/PIE 
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Challenges for Mitigation Schemes  

It is non-trivial when an attacker is the kernel: 

 

• Visible memory layout 

• Small randomization entropy 

• No runtime page permission change 
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Challenges for Mitigation Schemes  

It is non-trivial when an attacker is the kernel: 

 

• Visible memory layout 
 Secure in-enclave loading 

• Small randomization entropy 
 Fine-grained ASLR 

• No runtime page permission change 
 Soft-DEP/SFI 

83 



SGX-Shield’s Approach:  
In-enclave Loading 

Code pages 

Data pages 

Enclave 

User process 

In-enclave 
loader 

Enclave program 
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Stage 1 



SGX-Shield’s Approach:  
In-enclave Loading 

Code pages 

Data pages 

Enclave 

User process 

In-enclave 
loader 

Enclave program 

Encrypted 
enclave program 
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SGX-Shield’s Approach:  
In-enclave Loading 

Code pages 

Data pages 

Runtime Data 

User process 

SGX related 
data structure 

Code pages 

Data pages 

Enclave 

User process 

Enclave 

In-enclave 
loader 

Enclave program 

Encrypted 
enclave program 

In-enclave 
loading 
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Stage 1 Stage 2 



SGX-Shield’s Approach:  
In-enclave Loading 

Code pages 

Data pages 

Runtime Data 

User process 

SGX related 
data structure 

Code pages 

Data pages 

Enclave 

User process 

Enclave 

In-enclave 
loader 

Enclave program 

Encrypted 
enclave program 

In-enclave 
loading 

87 

Stage 1 Stage 2 

Soft DEP/SFI 



SGX-Shield’s Fine-grained ASLR 
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No Runtime Permission Change 

89 

RWX 



SW-based Permission Enforcement 
(via SFI like Nacl) 
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No Permission 

Software+Hardware 
permission 

X 

No Permission 

RW 

Code of loader 

Code 

Data of loader 

Virtual address space of an enclave 

Out of enclave 

Out of enclave 

Data 

Hardware-based 
permission 

RWX 

RWX 

RW 

RW 

Loading 



DEMO: SGX-Shield 
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https://github.com/sslab-gatech/SGX-Shield 
 

https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
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SGX-Shield has Two Limitations 

1) ALSR scheme is vulnerable against fine-grained 
side-channels (i.e., multifaceted) 

2) No protections on backward edges and SDK libs 

92 

SEC’18 Under 
submission 



Breaking Fine-grained ASLR 
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Attacking Randomization Process 
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1 → A[1] 
2 → A[2] 
3 → A[3] 
4 → A[4] 

A[1] 

A[2] 

A[3] 

A[4] 

1 

2 

3 

4 

4 → A[2] 

1 

2 

3 

4 

Memory read Memory write 
Side-channel observations 

1 → 3 (A[1]) 

2 → 4 (A[2]) 

3 → 1 (A[3]) 

4 → 2 (A[4]) 

3 → A[1] 
2 → A[4] 
1 → A[3] 

A[1] 

A[2] 

A[4] 

A[3] 
Address 



SGX-Armor: Obfuscating 
Randomization via Oblivious Swap 

95 

A[1] 

A[2] 

A[3] 

A[4] 

1 

2 

3 

4 

1 

2 

3 

4 

Memory read Memory write 
Side-channel observations 

1 → 3 → 1 → 3 

2 → 4 → 2 → 4 

? 

? 

Bit = 1 Bit = 0 

A[1] 

A[4] 

A[2] 

A[3] 
Address 

Oblivious swap Swap or not 
reveals the same 

patterns 

(Swap) 

(No swap) 



Oblivious Swap Primitive 
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SGX-Shield has Two Limitations 

1) ALSR scheme is vulnerable against fine-grained 
side-channels (i.e., multifaceted) 

2) No protections on backward edges and SDK libs 
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SEC’18 Under 
submission 



Another ROP 

• Similar to Signal Oriented Programming 

• SGX has ORET/CONT gadgets in SDK 
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SEC’18 



Traditional Attack Vectors 

• Cache-based side channel 
→ e.g., inferring a private key 

• Memory safety 
→ e.g., control flow hijacking 

• Weak mitigation techniques 
→ e.g., breaking ALSR 

• Uninitialized padding in EDL 
→ e.g., leaking security sensitive information 
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Uninitialized Padding Problem 

struct usbdevfs_connectinfo {  
    unsigned int devnum;  
    unsigned char slow;  
};  
 



Uninitialized Padding Problem 

struct usbdevfs_connectinfo {  
    unsigned int devnum;  
    unsigned char slow;  
};  
 

struct usbdevfs_connectinfo {  
    .devnum = 1,  
    .slow = 0, 
};  
 



Uninitialized Padding Problem 

struct usbdevfs_connectinfo {  
    unsigned int devnum;  
    unsigned char slow;  
};  
 

???? 

devnum (4 bytes) slow (1 byte) 

struct usbdevfs_connectinfo {  
    .devnum = 1,  
    .slow = 0, 
};  
 



Uninitialized Padding Problem 

???? 

devnum (4 bytes) slow (1 byte) 

struct usbdevfs_connectinfo {  
    .devnum = 1,  
    .slow = 0, 
};  
 

( ) 

DEADBE 



Uninitialized Padding Problem 

CCS’16 



Ecall/Ocall: EDL Interface for SGX 

If there is a padding issue in test_struct, it 
leaks (or inject) potentially sensitive data  
(e.g., a private key like HeartBleed) 
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// Enclave.edl 
untrusted { 
     test_struct e/ocall_test_struct(void); 
} 



Ecall/Ocall: EDL Interface for SGX 
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// Enclave.edl 
untrusted { 
     test_struct e/ocall_test_struct(void); 
} 

arXiv’17 

Host 

Enclave 



DEMO: SGX Bleed POC 

107 https://github.com/sslab-gatech/unisan 
 

https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan
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Implication 1: Using memory-safe 
language doesn’t solve the problem 

memory-safe 



Implication 2: Using Certified  
C compilers doesn’t help neither 
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C11 (ISO/IEC 9899:201x), 701 pages 

When a value is stored in an object of structure (…), 
the bytes of the object representation that correspond 
to any padding bytes take unspecified values. 

§6.2.6.1/6 

certified 

padding bytes take unspecified values 



New Attack Vectors 

• Page table attack 

• Branch shadowing attack 

• Rowhammer against SGX 

• L1 terminal fault against SGX (i.e., Foreshadow) 
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New Attack Vectors 

• Page table attack 
→ e.g., leaking image data 

• Branch shadowing attack 
→ e.g., breaking RSA 

• Rowhammer against SGX 
→ e.g., freezing machines 

• L1 terminal fault against SGX (i.e., Foreshadow) 
→ e.g., breaking SGX ecosystem (and more!) 

111 



Page Table Attack 
(controlled-channel attack) 
• Page level access pattern → reveal sensitive info. 

(e.g., page faults, page access bits, …) 

112 

SP’15 

Sec’17 



DEMO: Page Fault Attack 

113 



Defense: T-SGX 

114 
NDSS’17 

• Using Intel Transactional Synchronization Extension 
(TSX) to isolate page faults inside SGX 



Key Idea: TSX Isolates Faults! 

• Unexpected side-effects (see, DrK [CCS’16]) 

• Any faults → invokes an abort handler  

115 CCS’16 



A Strawman Solution 

• Protect the entire program with TSX! 

116 

Enclave Program 

Transaction 

XBEGIN 

XEND 

abort 

Fallback code 

Page fault 



Challenge: Not Progressing! 

1) Timer interrupt (i.e., external faults)  

2) False TSX aborts (e.g., capacity) 
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Enclave Program 

Transaction 

XBEGIN 

XEND 

abort 

Fallback code 

Timer interrupt 

… 

Cache 

Cache full 

abort 

OS Timer 



Approach: Smaller Execution Units 
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Enclave Program 

Fallback code 

… 

Cache 

OS Timer 

1) Execution time analysis 

Execution Block 

2) Cache analysis 

time constraint 



This design still leaks information 

Execution Blocks 
XBEGIN 

XEND 

Page 
fault 

Page A 

Page B 

Page A 

Page B 

TSX instructions are not 
protected 
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Solution: Springboard 

120 

Execution Blocks 

Page fault 

Springboard page 

Springboard page 

Fallback code 

Page A 

Page B 

Leak only single page 
(already known to attackers)! 

All transactions begin and end on the 
springboard, so attacker can only observe 
page fault on the springboard 



Design of T-SGX (Compiler) 

121 



T-SGX: Eradicating Page Faults 

• Technique to avoid false aborts (e.g., capacity) 

• Security analysis → springboard design 

• Performance optimizations  
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0

0.5

1

1.5

2

2.5

T-SGX

50% CPU, 30% Mem overheads 



DEMO: T-SGX 

123 https://github.com/sslab-gatech/t-sgx 
 

https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx


New Attack Vectors 

• Page table attack 
→ e.g., leaking image data 

• Branch shadowing attack 
→ e.g., breaking RSA 

• Rowhammer against SGX 
→ e.g., freezing machines 

• L1 terminal fault against SGX (i.e., Foreshadow) 
→ e.g., breaking SGX ecosystem (and more!) 
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New Side Channel:  
Branch Shadowing Attack 
• Finer-grained, yet noise-free! 

(unlike page faults / cache attacks, respectively) 

 

• Observation: 
• Branch history is shared between SGX and non-SGX 

 

→ Execution history of an enclave affects the  
     performance of non-SGX execution 
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New Side Channel:  
Branch Shadowing Attack 
• Finer-grained, yet noise-free! 

(unlike page faults / cache attacks, respectively) 

126 

SEC’17 



Idea: Exploiting New HW Features 

• Intel Skylake (and Broadwell) introduced two new 
debugging features that report prediction results 
 
• Last Branch Record (LBR) 

• Intel Processor Trace (PT) 

 

→ But only for non-enclave programs  
     (or enclave on a debug mode)  

127 



Our Approach: Branch Shadowing 

129 

enclave 

non-enclave 

Shadow replica 



Our Approach: Branch Shadowing 

•             are mapped onto the 
same branch prediction buffer   

•        is a shadow copy of an 
enclave program forced to take 
all branches (e.g., je → jmp) 

130 

je 0x0010  

enclave 

non-enclave 

jmp 0xFF10  

BTB/BPU 

store 

affect 



Our Approach: Branch Shadowing 

•             are mapped onto the 
same branch prediction buffer   

•        is a shadow copy of an 
enclave program forced to take 
all branches (e.g., je → jmp) 

•  Monitor        with LBR/PT and 
extract branch prediction 
results indirectly                 

131 

je 0x0010  

enclave 

non-enclave 

jmp 0xFF10  

BTB/BPU 

store 

affect 

Intel PT/LBR 



Branch Prediction 101 

   … 

   cmp $0, rax 

   je  L1 

   inc rbx 

   … 

L1:dec rbx 

Predict the next instr. of a branch instr. to avoid 
pipeline stalls 

Which one would be the next instr. 
to be predicted? 
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Branch Prediction 101 

   … 

   cmp $0, rax 

   je  L1 

   inc rbx 

   … 

L1:dec rbx 

Predict the next instr. of a branch instr. to avoid 
pipeline stalls 

Make this prediction if  
1) there is no history or 
2) the branch has not been taken 

133 



Branch Prediction 101 

   … 

   cmp $0, rax 

   je  L1 

   inc rbx 

   … 

L1:dec rbx 

Predict the next instr. of a branch instr. to avoid 
pipeline stalls 

Make this prediction if  
the branch has been taken 

Conditional behavior → Reveal history 
How can we know which branch was taken? 

134 



Branch Prediction vs. Misprediction 

• Measure branch execution time 
• Take longer if a branch is incorrectly predicted 

(e.g., roll back, clear pipeline, jump to the correct target) 

135 

Prediction Misprediction 

mean stdev mean stdev 

RDTSCP 94.21 13.10 120.61 806.56 

PT CYC 59.59 14.44 90.64 191.48 

LBR cycle 25.69 9.72 35.04 10.52 

→ Observable difference but high measurement noise 



Exploiting New HW Features 

• Intel LBR/PT explicitly report the prediction result, 
but only taken branches (w/ limited buf size) 

 

• Approach: 
• Translating all cond. to be taken in the shadow copy 

• Synchronization b/w enclave and its shadow 

136 



Example: Inferring Cond. Branch 

         cmp $0, rax 

0x00530: je  0x005f4 

0x00532: inc rbx 

         … 

0x005f4: dec rbx 

Enclave 
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Example: Inferring Cond. Branch 

         cmp $0, rax 

0x00530: je  0x005f4 

0x00532: inc rbx 

         … 

0x005f4: dec rbx 

Enclave 

• Prepare a shadow copy w/ 
• Colliding conditional branches 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow copy 

aligned 
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Example: Inferring Cond. Branch 

         cmp $0, rax 

0x00530: je  0x005f4 

0x00532: inc rbx 

         … 

0x005f4: dec rbx 

Enclave 

• Prepare a shadow copy w/ 
• Colliding conditional branches 

• Always to be taken (to be monitored by LBR) 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow copy 

aligned 
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Example: Inferring Cond. Branch 

         cmp $0, rax 

0x00530: je  0x005f4 

0x00532: inc rbx 

         … 

0x005f4: dec rbx 

Enclave 

OR 

BPU/BTB 

taken 

0x**530 not taken 

0x**530 
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Example: Inferring Cond. Branch 

         cmp $0, rax 

0x00530: je  0x005f4 

0x00532: inc rbx 

         … 

0x005f4: dec rbx 

Enclave 

LBR 

OR 

BPU/BTB 

taken 

0x**530 not taken 

0x**530 

Indexed/tagged by  
lower 31 bits 
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Example: Inferring Taken Branch 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow code 
BPU/BTB 

0x**530 taken 

LBR 
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Example: Inferring Taken Branch 

• BPU/BTB correctly predicts the execution of the 
shadow branch using the history 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow code 
BPU/BTB 

0x**530 taken 

LBR 
Correct! 
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Example: Inferring Taken Branch 

• If LBR reports: 
• Predicted → The target branch has been taken 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow code 
BPU/BTB 

0x**530 taken 

LBR 
0xff530 0xff5f4 Predicted 

Correct! 
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Example: Inferring Not-taken Branch 

• If LBR reports: 
• Predicted → The target branch has been taken 

• Mispredicted → The target branch has NOT been taken 

         cmp rax, rax 

0xff530: je  0xff5f4 

0xff532: nop 

         … 

0xff5f4: nop 

Shadow code 
BPU/BTB 

0x**530 not taken 

LBR 
0xff530 0xff5f4 Mispredicted 

Wrong! 
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Enabling Single Stepping! 

• Check branch state as frequently as possible to 
overcome the capacity limit of BPU/BTB and LBR 
• e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake) 

 

 

• Increase timer interrupt frequency 
• Adjust the TSC value of the local APIC timer 

• Disable the CPU cache 
• CD bit of the CR0 register 

~50 cycles 

~5 cycles 
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SGX-Step: Open Source Framework 

SysTEX’17 

https://github.com/jovanbulck/sgx-step 
 

• Local APIC 

• Userspace mapping for PTE 

https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step


Example: Attacking RSA Exp. 
/* X = A^E mod N */ 

mbedtls_mpi_exp_mod(X, A, E, N, _RR) { 

  … 

  while (1) { 

    … 

    // i-th bit of exponent 

    ei = (E->p[nblimbs] >> bufsize) & 1; 

     

    if (ei == 0 && state == 0) 

      continue; 

    if (ei == 0 && state == 1) 

      mpi_montmul(X, X, N, mm, &T); 

    … 

  } 

  … 

} 

Sliding-window 
exponentiation of mbedTLS 
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Example: Attacking RSA Exp. 
/* X = A^E mod N */ 

mbedtls_mpi_exp_mod(X, A, E, N, _RR) { 

  … 

  while (1) { 

    … 

    // i-th bit of exponent 

    ei = (E->p[nblimbs] >> bufsize) & 1; 

     

    if (ei == 0 && state == 0) 

      continue; 

    if (ei == 0 && state == 1) 

      mpi_montmul(X, X, N, mm, &T); 

    … 

  } 

  … 

} 

Taken only when ei is zero 

Sliding-window 
exponentiation of mbedTLS 
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Example: Attacking RSA Exp. 
/* X = A^E mod N */ 

mbedtls_mpi_exp_mod(X, A, E, N, _RR) { 

  … 

  while (1) { 

    … 

    // i-th bit of exponent 

    ei = (E->p[nblimbs] >> bufsize) & 1; 

     

    if (ei == 0 && state == 0) 

      continue; 

    if (ei == 0 && state == 1) 

      mpi_montmul(X, X, N, mm, &T); 

    … 

  } 

  … 

} 

Taken only when ei is zero 

Sliding-window 
exponentiation of mbedTLS 
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• The probability that the two branches return 
different results: 0.34 (error rates) 

• The inference accuracy of the remaining bits: 0.998 

• We were able to recover 66% of an RSA private 
key bit from a single run. 
• ≤10 runs are enough to fully recover the key. 

 

 



DEMO: Branch Shadowing Attack 
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What Else? 
Program/Function Description Leakages 

libc/strtol Convert a string 
into an integer 

The sign and length of an 
input 
Hexadecimal digits 

libc/vfprintf Print a formatted 
string 

The input format string 

LIBSVM/k_function Evaluate a kernel 
function 

The type of a kernel (e.g., 
linear, RBF) 
The number of features 

Apache/lookup_bui
ltin_method 

Parse the method 
of an HTTP 
request 

HTTP request method (e.g., 
GET, POST) 

152 



Defense: Flushing Branch States 
(Hardware) 
• Clear branch states during enclave mode switches 
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Defense: Flushing Branch States 
(Hardware) 
• Clear branch states during enclave mode switches 

• How much overheads (depending on frequency)? 
• Simulation: Flushing per >10k cycles incurs 

negligible overheads 
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Mitigation: Obfuscating Branch 
(Software/Compiler) 
• Set of conditional/indirect branches →  

a single indirect branch + conditional move instructions 

• The final indirect branch has a lot of targets such that it 
is difficult to infer its state. 

155 



Example: Branch Obfuscation 

L0:cmp $0,$a 

   je  L2 

L1:… 

L2:… 

Can identify whether L1 or L2 
has been executed 

Can identify whether Z1 has been 
executed but not its target 

transformation 

L0:  mov  $L1,r15 

     cmp  $0,$a 

     cmov $L2,r15 

     jmp  Z1 

L1:   … 

L2:   … 

… 

Z1:   jmpq *r15 
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Mitigation: Obfuscating Branch 
(Software/Compiler) 
• LLVM-based implementation 

• Overhead (nbench): ≤1.5✕ 

• Just mitigate the attack, don’t solve it completely 
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New Attack Vectors 

• Page table attack 
→ e.g., leaking image data 

• Branch shadowing attack 
→ e.g., breaking RSA 

• Rowhammer against SGX 
→ e.g., freezing machines 

• L1 terminal fault against SGX (i.e., Foreshadow) 
→ e.g., breaking SGX ecosystem (and more!) 

158 



Controlling Bit Flipping in DRAM 

159 ISCA’14 

• Reported random bit flippings happening in DRAM 

• Rowhammer by Google Project Zero (2015) 

• Further enhanced by many researchers 

 



SGX-Bomb: Rowhammer Attack 

• Integrity violation of EPC results in CPU lockdown 

• Rowhammer (SW) can trigger the violation! 

Core $ 

MEE Root 

DRAM 

EPC – Int Tree 
 
 
 

EPC – Enclaves 
 
 
 



SGX-Bomb: Rowhammer Attack 

• Integrity violation of EPC results in CPU lockdown 

• Rowhammer (SW) can trigger the violation! 

SysTEX’17 



About Integrity Violation 

• SGX assumes HW/physical attackers 

• Integrity violation → drop-and-lock policy 

 

• Implications: 
• DoS: Freezing an entire machine (cloud provider) 

• Require power recycle (not via normal methods) 
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SGX-Bomb Remarks 

• Easier to trigger than normal rowhammer 
i.e., a single, arbitrary bit in EPC region (128MB) 

 

• Harder to detect 
• Not notifiable in terms of resource usages 

• Popular defenses (e.g., in Linux) rely on PMU (e.g., cache 
misses) that is not possible for enclaves 
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DEMO: SGX-Bomb 

164 https://github.com/sslab-gatech/sgx-bomb 
 

https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb


Defenses against SGX-Bomb 

• Use non-faulty DRAM! 

• Use LPDDR3 that has Pseudo-TRR (Target Row Refresh) 
• ECC can’t completely block (easy to trigger multiple bits) 

 

• Potential mitigations: 
• Higher refresh rate (2x) 

• Using Uncore PMU 

• Row-aware memory allocation for EPC regions 
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New Attack Vectors 

• Page table attack 
→ e.g., leaking image data 

• Branch shadowing attack 
→ e.g., breaking RSA 

• Rowhammer against SGX 
→ e.g., freezing machines 

• L1 terminal fault against SGX (i.e., Foreshadow) 
→ e.g., breaking SGX ecosystem (and more!) 
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L1TF: L1 Terminal Fault 

167 

enclave1 enclave2 

Same address space 

Not present & L1D 

SEC’18 ArXiv’18 



Impacts of L1TF on SGX 

• Broken isolation guarantees 

• Distrustful remote attestation, thus ecosystem 
• Leaking secrets from architectural enclaves  

(e.g., quoting/launching) 

• Emulator vs. SGX 
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Defense: L1TF against SGX 

• Immediate steps (via microcode update): 
• Flushing L1 on EEXIT/AEX 

• Disabling hyperthreading 

 

• Q. What should we do to address this issue more 
fundamentally? 

• Q. What’s the right way to prevent further issues? 

169 



Outline 

• Threat model / assumption 

• Traditional attack vectors 

• New attack vectors 

• On-going approaches 

• Summary 
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On-going Projects for Defenses 
(collaborating with MS and Intel) 

1) Multifaceted side-channel attack (under review) 

2) Hardware-based fault isolation (on-going) 
- Seeking a better HW abstraction to contain faults 

(i.e., ideal interface to replace ad-hoc TSX) 

3) Loading-time synthesis (on-going) 
- Addressing side-channel at loading time, depending on 

the execution environment at end points 
(i.e., compositing SW-based schemes without conflicts) 
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PRIDWIN: Load-time Synthesis 

172 

Enclave 

1011 
0100 

Program & 
specifications 

1011 
0100 

Program & 
specifications 

1011 
0100 

Program 

T-SGX + 
Page-level 

ASLR 

Local Remote 

1011 
0100 

Program 

T-SGX + Page-level ASLR 

Page-level 
ASLR  

enabled 

TSX is not supported 
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T-SGX 
Target: Page-table attacks 
Priority: High 
Requirement: TSX 
Instrumentation: 
- Insert XBEGIN, XEDN at each block  

Page-level ASLR 
Target: Page-table attacks 
Priority: Low 
Requirement: N/A 
Instrumentation: 
- Break program into 4-KB pages 

Hardware configuration 
TSX support: No 

1011 
0100 

Program + 
Page-level 

ASLR 

Constraints 
solver 

Load-time synthesis 

Specifications & Constraints 

PRIDWIN: Load-time Synthesis 
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1011 
0100 

Protected 
executable 

Enclave 

1011 
0100 

WASM 

Initialization Synthesis Generation 

Defense 
specifications 

Hardware 
specifications 

Compiler 

Program 
source 

Multi-stage Loader 

PRIDWIN: Load-time Synthesis 



Summary 

• Intel SGX is a practical, promising building block to 
write a secure program 

• Intel SGX has unusually strong threat model, 
opening up unexpected attacks 

 

• Today’s Talk: Recent Attack/Defense of Intel SGX 
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Summary 

• It’s not future technology; it’s already everywhere! 


