
Attacks and Defenses for
Intel SGX

Taesoo Kim

About Myself

• 03-09: B.S. from KAIST in CS/EE

• 09-11: S.M. from MIT in CS

• 11-14: Ph.D. from MIT in CS

• 14-00: Assistant Professor at Gatech

2

Research interests:

 Operating Systems, Systems Security, Bug Finding, etc

https://taesoo.kim/

https://taesoo.kim/

Our Group

3

Our Group’s Research Interests

• Bug finding:
e.g., static analysis, fuzzing, symbolic execution, etc.

• System security:
e.g., system updates, Intel SGX, sandboxing, etc.

• System scalability:
e.g., file system, graph processing, scalable lock, etc.

4

Our Group’s Research Interests

5 https://gts3.org/pages/cves.html

(> 300 bugs in Linux, Firefox, OpenSSL, etc.)

https://gts3.org/pages/cves.html
https://gts3.org/pages/cves.html
https://gts3.org/pages/cves.html

DEFKOR00T: Won DEF CON CTF’18
(DEFKOR + R00tmentary)

6 (R00tmentary)

Attacks and Defenses for
Intel SGX

Taesoo Kim

The Team

8

Disclaimer

9

https://software.intel.com/en-us/sgx/academic-research

https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research
https://software.intel.com/en-us/sgx/academic-research

Outline

• Threat model / assumption

• Traditional attack vectors

• New attack vectors

• On-going approaches

• Summary

10

Outline

• Threat model / assumption

• Traditional attack vectors
• Cache-based side channel

• Memory safety

• Weak mitigation techniques (e.g., ASLR)

• Uninitialized padding in EDL

• New attack vectors

• On-going approaches

• Summary
11

Outline

• Threat model / assumption

• Traditional attack vectors

• New attack vectors
• Page table attack

• Branch shadowing attack

• Rowhammer against SGX

• L1 terminal fault against SGX (i.e., Foreshadow)

• On-going approaches

• Summary
12

https://foreshadowattack.eu/

Revisited: Intel SGX 101

• “Practical” TEE implementation by Intel

• Extending x86 Instruction Set Architecture (ISA)

– Native performance

– Compatible to x86

– Commodity (i.e., cheap)

Supermicro Server Lenovo T560 Dell OptiPlex 5040

Revisited: SGX for Cloud

14

Cloud provider (untrusted)

Revisited: SGX for Cloud

15

Cloud provider (untrusted)

Revisited: SGX for Cloud (Isolation)

16

Cloud provider (untrusted)

Revisited: SGX for Cloud
(Remote attestation)

17

Cloud provider (untrusted)

Client

EPID

by developer

Revisited: SGX for Cloud
(Remote attestation)

18

Cloud provider (untrusted)

Client

EPID

by developer

SGX Ecosystem for Attackers

19

: Trusted components (i.e., where we should attack)

: Attacker’s capabilities (i.e., what attackers can do)

Our Initial Interests as Attacker

20

Not interesting
(unknown, not popular)

Not interesting
(non technical issues)

Attacking applications running on enclaves
(i.e., breaking their isolation and confidentiality)
with the capabilities of the cloud provider

Summary: Intel SGX 101

• Two important design goals:
• Performance (i.e., native speed, multithread)

• General purpose (i.e., x86 ISA)

• Two important security primitives:
• Isolated execution → confidentiality, integrity

• Remote attestation → integrity

21

Isolated Execution

• Protect enclaves from untrusted privilege software

• Small attack surface (TCB: App + CPU)

22

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Processor Key

Enclave

Isolated Execution

• Protect enclaves from untrusted privilege software

• Small attack surface (TCB: App + CPU)

23

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Processor Key

Enclave
Snooping

Access from
OS/VMM

Access b/w
enclaves

SGX’s Threat Model (very strong!)

● All except the core package can be malicious
● Device, firmware, …

● Operating systems, hypervisor …

● DoS (availability) is naturally out of concern

● Intel excludes cache-based side-channel
(due to performance)

What if Enclave is Compromised?

• Leak sensitive information

• Prevent attackers from being audited/analyzed

• Permanently parasite to the enclave program

25

Protected?
by SGX

Enclave

No access
 from
OS/VMM

Leak secret

Enclave

Rootkit

Enclave

 MiTM

What if Enclave is Compromised?

• Leak sensitive information

• Prevent attackers from being audited/analyzed

• Permanently parasite to the enclave program

26

Protected?
by SGX

Enclave

No access
 from
OS/VMM

Leak secret

Enclave

Rootkit

Enclave

 MiTM

Due to 1) its strong threat model and
2) consequences of compromises, developing a
secure enclave program is much more difficult

than a typical program!

Demonstrated Post Exploitation
• Dumping confidential data

• e.g., memcpy(non-enclave region, enclave, size)

• Permanent parasite
• e.g., MiTM on the remote attestation

• Breaking ecosystem
• e.g., leaking attestation keys for Quoting enclaves

27 27
SEC’17 SEC’18

Thinking of SGX Usages

28

User

Data

Company

DRM X
e.g., prevent reverse engineering
(or DRM data)

Traditional Attack Vectors

• Cache-based side channel

• Memory safety

• Weak mitigation techniques

• Uninitialized padding in EDL

29

Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

30

Cache-based Side-channel Attacks

31

arXiv’17

EuroSec’17

WOOT’17

arXiv’17

Cache-based Side-channel Attacks

32

Cache attacks are possible and often, makes it
“easier” to launch the attack due to its strong threat

model (e.g., using PMC)
 → Known defenses (e.g., coloring ...)

CS101: Cache Structure

34

L1 L2

CS101: Cache

CPU

Memory

Cache

Hit Miss

CS101: Cache

Core1

L1C
L2

L3

L1D

Core2

L1C
L2

L1D

Core3

L1C
L2

L1D

Core4

L1C
L2

L1D

Memory

CPU

Miss

L3 hit L2 hit L1 hit

~240

~50
~14 ~3

~1

CS101: Cache

Core1

L1C
L2

L3

L1D

Core2

L1C
L2

L1D

Core3

L1C
L2

L1D

Core4

L1C
L2

L1D

Memory

CPU

16G

8M

32K 32K

512K

<

Which cacheline do we have to keep/evict (policy)?

How to organize cacheline (structure)?

Basic Idea: Cache Side-channel

Core1

L1D
L2

L3

L1C

Core2

L1D
L2

L1C

Core3

L1D
L2

L1C

Core4

L1D
L2

L1C

HyperV

VM0 VM1 VM2

Real Attack: AES?

{SubBytes + ShiftRows + MixColumns + AddRoundKeys} x {10, 12, 14}

Monitoring cacheline access of Lookup Table!

Known Attack Demonstrations

• Known cache-based side channel attacks:
• 2003 DES by Tsunoo et al. (with 226.0 samples)

• 2005 AES by Bernstein et al. (with 218.9 samples)

• 2005 RSA by Percival et al. (-)

• …

• 2011 AES by Gullasch et al. (with 26.6 samples)

• …

• 2017 AES by Ahmad et al. (with 10 samples against SGX)

40

Cache Side-channel (in Cloud)

Core1

L1C
L2

L3

L1D

Core2

L1C
L2

L1D

Core3

L1C
L2

L1D

Core4

L1C
L2

L1D

HyperV

VM0 VM1 VM2

Cache Side-channel against SGX

Core1

L1C
L2

L3

L1D

Core2

L1C
L2

L1D

Core3

L1C
L2

L1D

Core4

L1C
L2

L1D

HyperV

VM0 VM1 VM2

enclave

Thinking of SGX Adversaries:
SGX Makes Cache Attack Easier

• Accurate intervention (i.e., scheduling/exception)

• Controlled environment (i.e., OS, hyperthread)

• Rich information available (e.g., physical mapping, PMC)

43

arXiv’17 WOOT’17

Cache Attack is Practical Concern?

• Yes or no, depending on contexts and applications.
• Think first: why considering SGX? on cloud?

• Performance (= cache) vs. potential risks!

• SGX can make the cache attack harder too
• By leveraging isolation / randomization

(security by obscurity practical)

→ Intel explictly noted that it’s better to be
addressed in SW (if you wish) rather than HW (by
default).

44

Breaking Remote Attestation via
Cache-based Side-channel Attacks

45

IACR’18

Defense: Cache Attacks

• Cache oblivious implementation of crypto algos

• Fine-grained code/data randomization

• Mitigating via contiguous monitoring (e.g., Varys)

• Looking for better HW-based solutions!
(e.g., partitioning/coloring)

46 SEC’16 ATC’18

Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

47

Memory Safety Issues

48

• SGX is not free from memory safety issues

• Current ecosystem is built on memory unsafe lang.

Defense

SEC’17 SEC’18

Return-oriented Programming (ROP)
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

ret

dst

Return-oriented Programming (ROP)
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

50

ret

dst

ret pop rdi; ret
arg1
ret

Return-oriented Programming (ROP)
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

51

ret

dst

ret pop rdi; ret
arg1
ret

ret

system(arg1)
arg1
ret

e.g., system(“/bin/sh”)

Typical Requirements for ROP
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

52

dst

ret

system(arg1)
arg1
ret

e.g., system(“/bin/sh”)

pop rdi; ret

Code (via reverse
engineering)

Need to determine
the length of payload

ROP Inside an Enclave
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

53

Code is not visible!
(e.g., loaded in an encrypted form) ???

???

ROP Inside an Enclave
 void vuln(char *input) {

 char dst[0x100];

 memcpy(dst, input, 0x200);

 }

54

dst

Code is not visible!
(e.g., loaded in an encrypted form)

0x0000
0x0008

0x0100
0x0108

…

0x0110
0x0118

???
???

0x0000
0x0008

0x0100

0x0108

…

ret
0x0110
0x0118

???

SGX doesn’t report RIP
directly but the

corresponding page

ROP in Darkness: Dark ROP

• Step 1. Debunking the locations of pop gadgets

• Step 2. Locating ENCLU + pop rax (i.e., EEXIT)

• Step 3. Deciphering all pop gadgets

• Step 4. Locating memcpy()

55

Threat Model for DarkROP

• Know existence of a buffer overflow (i.e., crash)

• Crashing the enclave arbitrarily times

• Built with standard libraries (e.g., SGX SDK)

• Distributed in an encrypted form (like VC3)

56

Step 1. Looking for pop Gadgets

57

0x0000
0x0008

0x0100
0x0108

…

ret
0x0110
0x0118

You have a full control over the layout
of the enclave

Step 1. Looking for pop Gadgets

58

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip = 0xff00
(e.g., crash illegal instruction)

Step 1. Looking for pop Gadgets

59

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip = 0xff00
(e.g., crash illegal instruction)

…

Rip = 0x0118
(segfault)

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

pop ????
ret

0xff02

Step 1. Looking for pop Gadgets

60

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip = 0xff00
(e.g., crash illegal instruction)

…

Rip = 0x0118
(segfault)

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

pop ????
ret

0xff02

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

pop ????
pop ????
pop ????
ret

0x0120
0x0128

Rip = 0x0128
(segfault)

0xff30

Step 1. Looking for pop Gadgets

61
Rip = 0x0118
(segfault)

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

pop ????
ret

0xff02

0x0000
0x0008

0x0100

…

ret
0x0110
0x0118

pop ????
pop ????
pop ????
ret

0xff30

0x0120
0x0128

Rip = 0x0128
(segfault)

0xff02 → pop ?;ret
0xff30 → pop ?;pop ?;pop ?;ret
…

Catalog of pop gadgets
(unknown args)

Step 2. Looking for ENCLU

• ENCLU: an inst. dispatches to various leaf functions
• rax = 0: EREPORT

• rax = 1: EGETKEY

• …

• rax = 4: EEXIT

62

Step 2. Looking for ENCLU

• ENCLU: an inst. dispatches to various leaf functions
• rax = 0: EREPORT

• rax = 1: EGETKEY

• …

• rax = 4: EEXIT

63

→ Scan code for each “pop????;ret”

→ If gracefully exit, rip = ENCLU

0x0000
0x0008

0x0100
pop;ret

…

ret
0x0004
0x0118 ret ENCLU

Step 3. Deciphering pop Gadgets

• EEXIT (ENCLU & rax=4) left a register file uncleaned

64

→ Scan code for all pop gadgets

→ Check arguments

0x0000
0x0008

0x0100
pop arg1; pop arg2; ret

…

ret
0x0001
0x0002

ret ENCLU

pop rax; ret ret
0x0004

Step 3. Deciphering pop Gadgets

• EEXIT (ENCLU & rax=4) left a register file uncleaned

65

→ Scan code for all pop gadgets

→ Check arguments

0x0000
0x0008

0x0100
pop arg1; pop arg2; ret

…

ret
0x0001
0x0002

ret ENCLU

pop rax; ret ret
0x0004

arg1 = 0x0001
arg2 = 0x0002

rax = 0x0004
rsi = 0x0001
rdi = 0x0002
…

Deciphering
pop? pop? gadget

Register file
+

pop rsi
pop rdi
ret

=

Step 4. Looking for memcpy()

• Identifying memcpy(dst*, valid, 0x10)

66

pop rdi; pop rsi; pop rdx; ret ret
0xEE00

ret pop rax; ret

0x0010

ret ENCLU
0x0004

0xFF00

ret Varying (looking for memcpy)

Step 4. Looking for memcpy()

• E.g., invoking memcpy(0x7ff1000, any valid, 0x10)

67

0x7fff1000: 00 00 00 00 00 00 00 00 00 …

0x7fff1010: 00 00 00 00 00 00 00 00 00 …

 ….

0x7fff2000: 01 02 03 04 05 06 07 08 09 …

0x7fff2010: 11 12 13 14 15 16 17 18 19 …

0x7fff1000: 01 02 03 04 05 06 07 08 09 …

0x7fff1010: 11 12 13 14 15 16 17 18 19 …

 ….

0x7fff2000: 01 02 03 04 05 06 07 08 09 …

0x7fff2010: 11 12 13 14 15 16 17 18 19 …

Untrusted application memory

Gadgets Everywhere (e.g., SDK)

DEMO: PoC Dark ROP

69

Case Study 1: Unsealing Data

• Unsealing and leaking confidential data
• i.e., EGETKEY retrieves the hardware key bound to

specific enclave

71

Untrusted Application

 Secure Enclave

RAX Gadget

RBX Gadget

RCX Gadget

ENCLU Gadget

memcpy Gadget

Shadow_read_sealing_data()

{

 ROP_to_egetkey()

 unseal_data ()

}

 Sealing key

Case Study 2: Hijacking Remote
Attestation

• Breaking the Integrity guarantees of SGX
• MiTM between secure enclave and attestation server

• Masquerading to deceive remote attestation service

72

Emulated Enclave

Secure Enclave

memcpy

Gadget

RAX Gadget

RBX Gadget

RCX Gadget

RDX Gadget

ENCLU

Gadget

RSI Gadget

RDI Gadget

RCX Gadget

Fake_Attestation ()

{

 Compute_DH_key()

 Generate_REPORTDATA()

 ROP_to_copy_parameter()

 ROP_to_get_report()

 Get_Quote()

}

REPORTDATA REPORTDATA

REPORT

Defense: SGXBounds

73

• Addressing spatial memory problems (bound chk)

EuroSys’17

Defense: SGXBounds

74

• Addressing spatial memory problems (bound chk)

• Key idea: an efficient tag representation thanks to
smaller memory space!

Defense: SGXBounds

75

Done w/ Memory Safety on SGX?

• SGXBounds is a temporary solution
• No temporal safety (i.e., UAF)

• More address space in the future (e.g., large pages)

• What about traditional mitigations (required)?

76

Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

77

SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary

RELRO

DEP/NX

ASLR/PIE

78

SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary

RELRO

DEP/NX

ASLR/PIE

79

ecall_pointer_user_check():

prologue epillogue

SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary

RELRO

DEP/NX

ASLR/PIE

80

Defense: ASLR/SW-DEP inside SGX

• Popular mitigation schemes:
Stack Canary

RELRO

DEP/NX

ASLR/PIE

81
NDSS’17

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

• Visible memory layout

• Small randomization entropy

• No runtime page permission change

82

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

• Visible memory layout
 Secure in-enclave loading

• Small randomization entropy
 Fine-grained ASLR

• No runtime page permission change
 Soft-DEP/SFI

83

SGX-Shield’s Approach:
In-enclave Loading

Code pages

Data pages

Enclave

User process

In-enclave
loader

Enclave program

84

Stage 1

SGX-Shield’s Approach:
In-enclave Loading

Code pages

Data pages

Enclave

User process

In-enclave
loader

Enclave program

Encrypted
enclave program

85

Stage 1

SGX-Shield’s Approach:
In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

In-enclave
loader

Enclave program

Encrypted
enclave program

In-enclave
loading

86

Stage 1 Stage 2

SGX-Shield’s Approach:
In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

In-enclave
loader

Enclave program

Encrypted
enclave program

In-enclave
loading

87

Stage 1 Stage 2

Soft DEP/SFI

SGX-Shield’s Fine-grained ASLR

88

No Runtime Permission Change

89

RWX

SW-based Permission Enforcement
(via SFI like Nacl)

90

No Permission

Software+Hardware
permission

X

No Permission

RW

Code of loader

Code

Data of loader

Virtual address space of an enclave

Out of enclave

Out of enclave

Data

Hardware-based
permission

RWX

RWX

RW

RW

Loading

DEMO: SGX-Shield

91
https://github.com/sslab-gatech/SGX-Shield

https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield
https://github.com/sslab-gatech/SGX-Shield

SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

92

SEC’18 Under
submission

Breaking Fine-grained ASLR

93

Attacking Randomization Process

94

1 → A[1]
2 → A[2]
3 → A[3]
4 → A[4]

A[1]

A[2]

A[3]

A[4]

1

2

3

4

4 → A[2]

1

2

3

4

Memory read Memory write
Side-channel observations

1 → 3 (A[1])

2 → 4 (A[2])

3 → 1 (A[3])

4 → 2 (A[4])

3 → A[1]
2 → A[4]
1 → A[3]

A[1]

A[2]

A[4]

A[3]
Address

SGX-Armor: Obfuscating
Randomization via Oblivious Swap

95

A[1]

A[2]

A[3]

A[4]

1

2

3

4

1

2

3

4

Memory read Memory write
Side-channel observations

1 → 3 → 1 → 3

2 → 4 → 2 → 4

?

?

Bit = 1 Bit = 0

A[1]

A[4]

A[2]

A[3]
Address

Oblivious swap Swap or not
reveals the same

patterns

(Swap)

(No swap)

Oblivious Swap Primitive

96

SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

97

SEC’18 Under
submission

Another ROP

• Similar to Signal Oriented Programming

• SGX has ORET/CONT gadgets in SDK

98

SEC’18

Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

99

Uninitialized Padding Problem

struct usbdevfs_connectinfo {
 unsigned int devnum;
 unsigned char slow;
};

Uninitialized Padding Problem

struct usbdevfs_connectinfo {
 unsigned int devnum;
 unsigned char slow;
};

struct usbdevfs_connectinfo {
 .devnum = 1,
 .slow = 0,
};

Uninitialized Padding Problem

struct usbdevfs_connectinfo {
 unsigned int devnum;
 unsigned char slow;
};

????

devnum (4 bytes) slow (1 byte)

struct usbdevfs_connectinfo {
 .devnum = 1,
 .slow = 0,
};

Uninitialized Padding Problem

????

devnum (4 bytes) slow (1 byte)

struct usbdevfs_connectinfo {
 .devnum = 1,
 .slow = 0,
};

()

DEADBE

Uninitialized Padding Problem

CCS’16

Ecall/Ocall: EDL Interface for SGX

If there is a padding issue in test_struct, it
leaks (or inject) potentially sensitive data
(e.g., a private key like HeartBleed)

105

// Enclave.edl
untrusted {
 test_struct e/ocall_test_struct(void);
}

Ecall/Ocall: EDL Interface for SGX

106

// Enclave.edl
untrusted {
 test_struct e/ocall_test_struct(void);
}

arXiv’17

Host

Enclave

DEMO: SGX Bleed POC

107 https://github.com/sslab-gatech/unisan

https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan
https://github.com/sslab-gatech/unisan

108

Implication 1: Using memory-safe
language doesn’t solve the problem

memory-safe

Implication 2: Using Certified
C compilers doesn’t help neither

109

C11 (ISO/IEC 9899:201x), 701 pages

When a value is stored in an object of structure (…),
the bytes of the object representation that correspond
to any padding bytes take unspecified values.

§6.2.6.1/6

certified

padding bytes take unspecified values

New Attack Vectors

• Page table attack

• Branch shadowing attack

• Rowhammer against SGX

• L1 terminal fault against SGX (i.e., Foreshadow)

110

New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)

111

Page Table Attack
(controlled-channel attack)
• Page level access pattern → reveal sensitive info.

(e.g., page faults, page access bits, …)

112

SP’15

Sec’17

DEMO: Page Fault Attack

113

Defense: T-SGX

114
NDSS’17

• Using Intel Transactional Synchronization Extension
(TSX) to isolate page faults inside SGX

Key Idea: TSX Isolates Faults!

• Unexpected side-effects (see, DrK [CCS’16])

• Any faults → invokes an abort handler

115 CCS’16

A Strawman Solution

• Protect the entire program with TSX!

116

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Page fault

Challenge: Not Progressing!

1) Timer interrupt (i.e., external faults)

2) False TSX aborts (e.g., capacity)

117

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Timer interrupt

…

Cache

Cache full

abort

OS Timer

Approach: Smaller Execution Units

118

Enclave Program

Fallback code

…

Cache

OS Timer

1) Execution time analysis

Execution Block

2) Cache analysis

time constraint

This design still leaks information

Execution Blocks
XBEGIN

XEND

Page
fault

Page A

Page B

Page A

Page B

TSX instructions are not
protected

119

Solution: Springboard

120

Execution Blocks

Page fault

Springboard page

Springboard page

Fallback code

Page A

Page B

Leak only single page
(already known to attackers)!

All transactions begin and end on the
springboard, so attacker can only observe
page fault on the springboard

Design of T-SGX (Compiler)

121

T-SGX: Eradicating Page Faults

• Technique to avoid false aborts (e.g., capacity)

• Security analysis → springboard design

• Performance optimizations

122

0

0.5

1

1.5

2

2.5

T-SGX

50% CPU, 30% Mem overheads

DEMO: T-SGX

123 https://github.com/sslab-gatech/t-sgx

https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx
https://github.com/sslab-gatech/t-sgx

New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)

124

New Side Channel:
Branch Shadowing Attack
• Finer-grained, yet noise-free!

(unlike page faults / cache attacks, respectively)

• Observation:
• Branch history is shared between SGX and non-SGX

→ Execution history of an enclave affects the
 performance of non-SGX execution

125

New Side Channel:
Branch Shadowing Attack
• Finer-grained, yet noise-free!

(unlike page faults / cache attacks, respectively)

126

SEC’17

Idea: Exploiting New HW Features

• Intel Skylake (and Broadwell) introduced two new
debugging features that report prediction results

• Last Branch Record (LBR)

• Intel Processor Trace (PT)

→ But only for non-enclave programs
 (or enclave on a debug mode)

127

Our Approach: Branch Shadowing

129

enclave

non-enclave

Shadow replica

Our Approach: Branch Shadowing

• are mapped onto the
same branch prediction buffer

• is a shadow copy of an
enclave program forced to take
all branches (e.g., je → jmp)

130

je 0x0010

enclave

non-enclave

jmp 0xFF10

BTB/BPU

store

affect

Our Approach: Branch Shadowing

• are mapped onto the
same branch prediction buffer

• is a shadow copy of an
enclave program forced to take
all branches (e.g., je → jmp)

• Monitor with LBR/PT and
extract branch prediction
results indirectly

131

je 0x0010

enclave

non-enclave

jmp 0xFF10

BTB/BPU

store

affect

Intel PT/LBR

Branch Prediction 101

 …

 cmp $0, rax

 je L1

 inc rbx

 …

L1:dec rbx

Predict the next instr. of a branch instr. to avoid
pipeline stalls

Which one would be the next instr.
to be predicted?

132

Branch Prediction 101

 …

 cmp $0, rax

 je L1

 inc rbx

 …

L1:dec rbx

Predict the next instr. of a branch instr. to avoid
pipeline stalls

Make this prediction if
1) there is no history or
2) the branch has not been taken

133

Branch Prediction 101

 …

 cmp $0, rax

 je L1

 inc rbx

 …

L1:dec rbx

Predict the next instr. of a branch instr. to avoid
pipeline stalls

Make this prediction if
the branch has been taken

Conditional behavior → Reveal history
How can we know which branch was taken?

134

Branch Prediction vs. Misprediction

• Measure branch execution time
• Take longer if a branch is incorrectly predicted

(e.g., roll back, clear pipeline, jump to the correct target)

135

Prediction Misprediction

mean stdev mean stdev

RDTSCP 94.21 13.10 120.61 806.56

PT CYC 59.59 14.44 90.64 191.48

LBR cycle 25.69 9.72 35.04 10.52

→ Observable difference but high measurement noise

Exploiting New HW Features

• Intel LBR/PT explicitly report the prediction result,
but only taken branches (w/ limited buf size)

• Approach:
• Translating all cond. to be taken in the shadow copy

• Synchronization b/w enclave and its shadow

136

Example: Inferring Cond. Branch

 cmp $0, rax

0x00530: je 0x005f4

0x00532: inc rbx

 …

0x005f4: dec rbx

Enclave

137

Example: Inferring Cond. Branch

 cmp $0, rax

0x00530: je 0x005f4

0x00532: inc rbx

 …

0x005f4: dec rbx

Enclave

• Prepare a shadow copy w/
• Colliding conditional branches

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow copy

aligned

138

Example: Inferring Cond. Branch

 cmp $0, rax

0x00530: je 0x005f4

0x00532: inc rbx

 …

0x005f4: dec rbx

Enclave

• Prepare a shadow copy w/
• Colliding conditional branches

• Always to be taken (to be monitored by LBR)

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow copy

aligned

139

Example: Inferring Cond. Branch

 cmp $0, rax

0x00530: je 0x005f4

0x00532: inc rbx

 …

0x005f4: dec rbx

Enclave

OR

BPU/BTB

taken

0x**530 not taken

0x**530

140

Example: Inferring Cond. Branch

 cmp $0, rax

0x00530: je 0x005f4

0x00532: inc rbx

 …

0x005f4: dec rbx

Enclave

LBR

OR

BPU/BTB

taken

0x**530 not taken

0x**530

Indexed/tagged by
lower 31 bits

141

Example: Inferring Taken Branch

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR

142

Example: Inferring Taken Branch

• BPU/BTB correctly predicts the execution of the
shadow branch using the history

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR
Correct!

143

Example: Inferring Taken Branch

• If LBR reports:
• Predicted → The target branch has been taken

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR
0xff530 0xff5f4 Predicted

Correct!

144

Example: Inferring Not-taken Branch

• If LBR reports:
• Predicted → The target branch has been taken

• Mispredicted → The target branch has NOT been taken

 cmp rax, rax

0xff530: je 0xff5f4

0xff532: nop

 …

0xff5f4: nop

Shadow code
BPU/BTB

0x**530 not taken

LBR
0xff530 0xff5f4 Mispredicted

Wrong!

145

Enabling Single Stepping!

• Check branch state as frequently as possible to
overcome the capacity limit of BPU/BTB and LBR
• e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake)

• Increase timer interrupt frequency
• Adjust the TSC value of the local APIC timer

• Disable the CPU cache
• CD bit of the CR0 register

~50 cycles

~5 cycles

146

SGX-Step: Open Source Framework

SysTEX’17

https://github.com/jovanbulck/sgx-step

• Local APIC

• Userspace mapping for PTE

https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step
https://github.com/jovanbulck/sgx-step

Example: Attacking RSA Exp.
/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

 …

 while (1) {

 …

 // i-th bit of exponent

 ei = (E->p[nblimbs] >> bufsize) & 1;

 if (ei == 0 && state == 0)

 continue;

 if (ei == 0 && state == 1)

 mpi_montmul(X, X, N, mm, &T);

 …

 }

 …

}

Sliding-window
exponentiation of mbedTLS

148

Example: Attacking RSA Exp.
/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

 …

 while (1) {

 …

 // i-th bit of exponent

 ei = (E->p[nblimbs] >> bufsize) & 1;

 if (ei == 0 && state == 0)

 continue;

 if (ei == 0 && state == 1)

 mpi_montmul(X, X, N, mm, &T);

 …

 }

 …

}

Taken only when ei is zero

Sliding-window
exponentiation of mbedTLS

149

Example: Attacking RSA Exp.
/* X = A^E mod N */

mbedtls_mpi_exp_mod(X, A, E, N, _RR) {

 …

 while (1) {

 …

 // i-th bit of exponent

 ei = (E->p[nblimbs] >> bufsize) & 1;

 if (ei == 0 && state == 0)

 continue;

 if (ei == 0 && state == 1)

 mpi_montmul(X, X, N, mm, &T);

 …

 }

 …

}

Taken only when ei is zero

Sliding-window
exponentiation of mbedTLS

150

• The probability that the two branches return
different results: 0.34 (error rates)

• The inference accuracy of the remaining bits: 0.998

• We were able to recover 66% of an RSA private
key bit from a single run.
• ≤10 runs are enough to fully recover the key.

DEMO: Branch Shadowing Attack

151

What Else?
Program/Function Description Leakages

libc/strtol Convert a string
into an integer

The sign and length of an
input
Hexadecimal digits

libc/vfprintf Print a formatted
string

The input format string

LIBSVM/k_function Evaluate a kernel
function

The type of a kernel (e.g.,
linear, RBF)
The number of features

Apache/lookup_bui
ltin_method

Parse the method
of an HTTP
request

HTTP request method (e.g.,
GET, POST)

152

Defense: Flushing Branch States
(Hardware)
• Clear branch states during enclave mode switches

153

Defense: Flushing Branch States
(Hardware)
• Clear branch states during enclave mode switches

• How much overheads (depending on frequency)?
• Simulation: Flushing per >10k cycles incurs

negligible overheads

154

Mitigation: Obfuscating Branch
(Software/Compiler)
• Set of conditional/indirect branches →

a single indirect branch + conditional move instructions

• The final indirect branch has a lot of targets such that it
is difficult to infer its state.

155

Example: Branch Obfuscation

L0:cmp $0,$a

 je L2

L1:…

L2:…

Can identify whether L1 or L2
has been executed

Can identify whether Z1 has been
executed but not its target

transformation

L0: mov $L1,r15

 cmp $0,$a

 cmov $L2,r15

 jmp Z1

L1: …

L2: …

…

Z1: jmpq *r15

156

Mitigation: Obfuscating Branch
(Software/Compiler)
• LLVM-based implementation

• Overhead (nbench): ≤1.5✕

• Just mitigate the attack, don’t solve it completely

157

New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)

158

Controlling Bit Flipping in DRAM

159 ISCA’14

• Reported random bit flippings happening in DRAM

• Rowhammer by Google Project Zero (2015)

• Further enhanced by many researchers

SGX-Bomb: Rowhammer Attack

• Integrity violation of EPC results in CPU lockdown

• Rowhammer (SW) can trigger the violation!

Core $

MEE Root

DRAM

EPC – Int Tree

EPC – Enclaves

SGX-Bomb: Rowhammer Attack

• Integrity violation of EPC results in CPU lockdown

• Rowhammer (SW) can trigger the violation!

SysTEX’17

About Integrity Violation

• SGX assumes HW/physical attackers

• Integrity violation → drop-and-lock policy

• Implications:
• DoS: Freezing an entire machine (cloud provider)

• Require power recycle (not via normal methods)

162

SGX-Bomb Remarks

• Easier to trigger than normal rowhammer
i.e., a single, arbitrary bit in EPC region (128MB)

• Harder to detect
• Not notifiable in terms of resource usages

• Popular defenses (e.g., in Linux) rely on PMU (e.g., cache
misses) that is not possible for enclaves

163

DEMO: SGX-Bomb

164 https://github.com/sslab-gatech/sgx-bomb

https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb
https://github.com/sslab-gatech/sgx-bomb

Defenses against SGX-Bomb

• Use non-faulty DRAM!

• Use LPDDR3 that has Pseudo-TRR (Target Row Refresh)
• ECC can’t completely block (easy to trigger multiple bits)

• Potential mitigations:
• Higher refresh rate (2x)

• Using Uncore PMU

• Row-aware memory allocation for EPC regions

165

New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)

166

L1TF: L1 Terminal Fault

167

enclave1 enclave2

Same address space

Not present & L1D

SEC’18 ArXiv’18

Impacts of L1TF on SGX

• Broken isolation guarantees

• Distrustful remote attestation, thus ecosystem
• Leaking secrets from architectural enclaves

(e.g., quoting/launching)

• Emulator vs. SGX

168

Defense: L1TF against SGX

• Immediate steps (via microcode update):
• Flushing L1 on EEXIT/AEX

• Disabling hyperthreading

• Q. What should we do to address this issue more
fundamentally?

• Q. What’s the right way to prevent further issues?

169

Outline

• Threat model / assumption

• Traditional attack vectors

• New attack vectors

• On-going approaches

• Summary

170

On-going Projects for Defenses
(collaborating with MS and Intel)

1) Multifaceted side-channel attack (under review)

2) Hardware-based fault isolation (on-going)
- Seeking a better HW abstraction to contain faults

(i.e., ideal interface to replace ad-hoc TSX)

3) Loading-time synthesis (on-going)
- Addressing side-channel at loading time, depending on

the execution environment at end points
(i.e., compositing SW-based schemes without conflicts)

171

PRIDWIN: Load-time Synthesis

172

Enclave

1011
0100

Program &
specifications

1011
0100

Program &
specifications

1011
0100

Program

T-SGX +
Page-level

ASLR

Local Remote

1011
0100

Program

T-SGX + Page-level ASLR

Page-level
ASLR

enabled

TSX is not supported

173

T-SGX
Target: Page-table attacks
Priority: High
Requirement: TSX
Instrumentation:
- Insert XBEGIN, XEDN at each block

Page-level ASLR
Target: Page-table attacks
Priority: Low
Requirement: N/A
Instrumentation:
- Break program into 4-KB pages

Hardware configuration
TSX support: No

1011
0100

Program +
Page-level

ASLR

Constraints
solver

Load-time synthesis

Specifications & Constraints

PRIDWIN: Load-time Synthesis

174

1011
0100

Protected
executable

Enclave

1011
0100

WASM

Initialization Synthesis Generation

Defense
specifications

Hardware
specifications

Compiler

Program
source

Multi-stage Loader

PRIDWIN: Load-time Synthesis

Summary

• Intel SGX is a practical, promising building block to
write a secure program

• Intel SGX has unusually strong threat model,
opening up unexpected attacks

• Today’s Talk: Recent Attack/Defense of Intel SGX

175

Summary

• It’s not future technology; it’s already everywhere!

