
The 7th Summer School on Cyber and Computer Security

Technion – October 2nd, 2018

Ittai Anati – ittai.anati@intel.com

Disclaimers
 Intel technologies’ features and benefits depend on system configuration and may require enabled

hardware, software or service activation. Performance varies depending on system configuration.
Learn more at Intel.com, or from the OEM or retailer.

 You may not use or facilitate the use of this document in connection with any infringement or other
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.

 Intel disclaims all express and implied warranties, including without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in trade.

 No computer system can be absolutely secure.

 Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

 Copyright © Intel Corporation

3

Agenda

 SGX Fundamentals (level setting)

 SGX1 deeper dive

Break

 SGX2

 Flexible Launch Control, VMM Oversubscription, Key Separation and Sharing

 Provisioning, Attestation and Recovery

The Dream

5

Challenge: Keeping Secrets on an Open Platform

Software solutions are responsible for keeping sensitive data which comes in
many forms

 Authentication Credentials

 Personal information

 Financial information

 Intellectual property

 Medical records

 Protected content

Who do we trust to safeguard these secrets?

 How many SW components are in our Trusted Compute Base (TCB)?

App
Malicious

App

6

Why is it so hard?

OS

App

Protected Mode (rings) allows the OS to protect itself from apps …

… and apps from each other …

X

OK

X X

… UNTIL a malicious attacker gains full privileges and then

tampers with the OS or other apps

Apps not protected from privileged code attacks

Attack

Bad

Code

Attack

Build

Trusted environ.

A1 AnA2 A3 T1 TnT2 T3

OS

Main Environment Trusted Environment

7

A Separate Trusted Execution Environment (TEE)

Attack

Works for one app … but not many

Works for one vendor … but not many

Resource
Manager

Examples

1. Virtualization

2. Security Co-

Processors

3. Separate

Environment

Privilege isolation doesn’t scale across the ecosystem

Build

App

X

Intel® SGX – The Philosophy

8

Enclaves

 Confidentiality and Integrity-protected data &
code

 Controlled access to secrets

 Smaller attack surface

Familiar development/debug environment

 Standard OS environment and programming
model

 Single application environment

 Builds on existing ecosystem expertise

Familiar deployment model

 Platform integration not a bottleneck to
deployment of trusted apps

Scalable security within mainstream environment

Hardware

VMM

OS

App App

Attack surface

with Intel® SGX

Attack surface today

XX

Conventional Attack Surface

Attack Surface with Intel® SGX

Enclave

Build

9

Enclave Programming Environment

Protected execution environment embedded in a process

App

Code

App Data

OS
Enclave

Code

Enclave

Data/

Heap/

Stack

With its own code and data

User Process

Provides Confidentiality Integrity and Anti-replay

With controlled entry points for multiple threads

With access to app memory
TCS (*n)

Enclave

Build

Enclave

Blob

10

Intel® SGX: Greater protection against SW Attacks

 App created with trusted and untrusted
sections

 App runs & calls OS to place enclave in
trusted memory

 App calls trusted function (EENTER)

– code running inside enclave can see and
access data in clear

– external access to code/data is denied

 Function ends and returns (EEXIT)

– enclave data remains protected in trusted
memory

Untrusted Part

of App

Trusted Part

of App

Create Enclave

CallTrusted Func.

Execute

Return

(etc.)

Application

Other SW

Call Gate

SSN: 999-84-2611m8U3bcV#zP49Q

Build

11

Greater protection against Memory Snooping Attacks

 Security perimeter is the CPU package

boundary

 Data and code unencrypted inside CPU

package

 Data and code outside CPU package is

encrypted and integrity checked with

replay protection

 External memory reads and bus snoops

can only see encrypted data

 Attempts to modify memory will be

detected

Cores

Jco3lks937weu0cwejpoi9987v80we
Cache

System
Memory

AMEX:

3234-

134584-

26864

CPU Package

Snoop

Snoop

Build

12

13

Intel® SGX - Overview

A HW assisted paradigm introduced on 6th generation Core™ for applications to

locate and protect critical secrets in a structure called an “enclave”

– Against SW attacks originated at any privilege level

– Against many hardware based attacks

Remote anonymous attestation to verify code and data signatures at the

application level

Local attestation between applications

HW based unique keys for sealing

Synergistic and scalable with other CPU and platform features

– Multi-core, DRNG, AES-NI, SHA-NI, Trusted time, Monotonic counter

14

Protected Memory - Enclave Page Cache (EPC)

Fixed area of physical memory for holding secure pages

 Setup and locked by BIOS until next reset and verified by the CPU

 Divided into 4KB pages with their own protected access rights assignments

Restricted access

 Access restricted to enclaves and SGX instructions

 Enclaves can only access their own content according to the assigned access
rights

Instructions to swap EPC pages through main memory without compromising security

 Encryption, integrity, anti-replay

Managed by the OS as a system resource, but opaque to the OS

15

Management

 ECREATE
EADD
EEXTEND
EREMOVE

 EINIT

Execution

 EENTER
EEXIT

 AEX - Async EXIT
ERESUME

Sealing & Attestation

 EGETKEY
EREPORT

Paging

 EPA

EBLOCK

ETRACK

 EWB

ELDB

ELDU

Debug

 EDBGRD

EDBGWR

SGX Instruction Breakdown (supervisor/user)

Build

Synchronous

Interrupts

Keys

Protection Management

Swap

Verify

EINIT

EADD (Copy Page)EADD (Copy Page)

ECREATE (Range)ECREATE (Range)

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave
Code/Data

Plaintext

Code/Data

Update PTE

Build

Plaintext

Code/Data

Code/Data

Code/Data

Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data
EEXTENDEEXTEND

EPCM

Invalid

Invalid
Valid, REG,

LA,SECS

17

Enclave Life Cycle
1234567889

SECS InvalidValid, SECS, LA

Invalid

/15

BIOS setupEnclave

creation

Enclave initEnclave active

SECS

Invalid
Valid, REG,

LA,SECS

EREMOVEEREMOVE

EEXITEEXIT

EENTEREENTER

EINIT

EADD (Copy Page)

ECREATE (Range)

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave
Code/Data

Plaintext

Code/Data

Build

Code/Data

Code/Data

Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data
EEXTEND

EPCM

Valid, REG,

LA,SECS

Invalid

Invalid

Invalid

Valid, REG,

LA,SECS

18

Enclave Life Cycle
101112131415

SECS InvalidValid, SECS, LA

Invalid

/15

Enclave activeEnclave destruction

SECS

19

Build

20

Example: Secure Transaction

Stage 1 Remote PlatformClient Application

Enclave
Authenticated Channel

1. Enclave built & measured against ISV’s signed manifest

2. Enclave uses HW to obtain REPORT

3. REPORT & ephemeral key sent to server & verified

4. A trusted channel is established with remote server

1

2

4

ISV
HWISV

3

21

Example: Secure Transaction

Stage 1 Client Application

Enclave
Authenticated Channel

1. Enclave built & measured against ISV’s signed manifest

2. Enclave uses HW to obtain REPORT

3. REPORT with an ephemeral key sent to server & verified

4. A trusted channel is established with remote server

5. User info sent via trusted channel to server

6. User Token provisioned back to enclave via trusted channel

1

2

3

4

ID

5

Build

Remote Platform

22

Example: Secure Transaction

Stage 1 Client Application

Enclave
Authenticated Channel

1. Enclave built & measured against ISV’s signed manifest

2. Enclave uses HW to obtain REPORT

3. REPORT with an ephemeral key sent to server & verified

4. A trusted channel is established with remote server

5. User info sent via trusted channel to server

6. User token supplied (provisioned) to enclave via trusted channel

7. Enclave uses HW to obtain SEALING key

8. Enclave encrypts user token using SEALING Key & stores the

sealed blob on disk for future use

1

2

3

4

6

7

8 7

Build

Remote Platform

ID

5

23

Example: Secure Transaction

Day-to-day Client Application

Enclave
Authenticated Channel

1. Enclave built & measured against ISV’s signed manifest

2. Enclave retrieves sealed blob from disk

3. Enclave uses HW to obtain SEALING Key

4. Enclave extracts the User Token from the blob

5. User Token sent to remote platform and ID retrieved.

6. Trusted channel is established. No need to enter

passwords

1

2

3

4 5
6

ID

Build

Remote Platform



25

Emulating Intel® SGX

Enclave code is regular software that can run in an SGX ISA emulator

 So what prevents attackers from using a rogue SGX ISA emulator?

Only an enclave running on genuine SGX capable HW (“real” enclave) can:

 Prove to a 3rd party that it’s a “real” enclave

 Access secrets that were previously stored on the platform by a “real” enclave

Genuine SGX HW Emulated SGX environment

Enclave validation Production level Functional w/ debug content

Sealing Production level Functional w/ debug content

Attestation Production level Functional w/ debug content

26

Sealing & Attestation

Attestation: Proving to a 3rd party an enclave is properly running on genuine Intel® SGX
enabled HW

 A 3rd party shouldn’t supply sensitive information to an enclave without ensuring it’s
properly running on genuine Intel® SGX enabled HW

Sealing: Encrypting sensitive information when exporting outside of the enclave (e.g.
saving tokens for future use)

Sealing and Attestation are based on AES-128/SHA-256 cryptography using 128-bit keys

 Keys are unique per processor and its security status level

 Keys are unique per enclave

 Dedicated keys for Sealing (Seal), Attestation (Report), and platform establishment
(Provisioning)

27

Debugging an Enclave
Production enclaves disable debugging facilities:

 Breakpoints, Single stepping

 Enclave-specific performance monitoring

 Tracing

SGX debug model: minimum intrusiveness

 Debuggable and non debuggable enclaves can co-exist

 Access control semantics remain very similar to production

Any enclave can become debuggable by setting its DEBUG Attribute bit at build time

 The REPORT reflects the debuggability of the enclave

 Enclave receives different keys

 Debug functions (breakpoint, single stepping, etc.) are allowed

 EDBGRD and EDBGWR allow the debugger access to enclave’s memory

29

EPC Protection Model

DMA & Devices

Memory

Encryption

Engine (MEE)

SoC

Cores

Cryptographic Protections

No EPC access

DRAM

EPC (Ciphertext)

Evicted enclave

page

Encrypted

and replay

protected by

ISA

Cached

EPC

(Plaintext)

Access Control Protections

Encrypted

and replay

protected

by MEE

30

EPC Page Swapping - Protection

EPC is a fixed-size portion of memory setup by BIOS

OS must be able to dynamically swap pages into and out of EPC

EPC swapping ISA maintains SGX security objectives:

 Confidentiality, integrity, replay-protection

 128 Byte MAC-protected metadata payload (PCMD) is generated for every

evicted page:

– Hash of page’s content

– Page’s security information

– Page’s version number

 The version always remains in protected memory

31

EPC Page Swapping - Overview

Two instructions swap a page between EPC and main memory

 EWB – Secure eviction of an EPC page into main memory

 ELD – Secure loading of a previously evicted page back into EPC

But that’s not enough

 Logical processors might still have TLB mappings to the evicted page

 Need to ensure the evicted page’s content can’t be accessed by anyone

Solution: A staged trust and verify approach

 OS needs to send an IPI to flush TLBs. EWB verifies it has been properly done

 No need for a full rendezvous

 Logical processors are allowed to re-enter the enclave after flushing their stale
entries

ENCLAVEENCLAVE

32

EPC Page Swapping - Synchronization

Treatment of stale TLB entries

EBLOCK ETRACK
OS IPI TLB

invalidate
EWB

Marks the page as BLOCKED.

Attempts to access which miss

the TLB will fail.

Moves the enclave to a new

EPOCH. New entries into the

enclave can’t access the page

but can use other pages

All threads exit the

enclave and flush their

stale TLB entries

Page is evicted. EWB fails if any

logical processor hasn’t flushed

the TLBs

TLB

Build

Enclave active

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave

ETRACK

Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

EPCM

Valid,REG, LA,

SECS

Invalid

Invalid

Valid,REG, LA,

SECS

33

EPC Page Swapping
1234

EBLOCK

IPI

SECS Valid, SECS, LA

/ 7

Block page

access

New

EPOCH

Stale entry

removed

Build

Code/Data
Enclave

Valid,REG, LA,

SECS, BLOCK

Plaintext

Code/Data

Code/Data

Plaintext

Code/Data

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave

EWB

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

EPCM

Valid,REG, LA,

SECS

Invalid

Invalid

Valid,REG, LA,

SECS, BLOCK

34

EPC Page Swapping 567

Cyphertext

Code/Data

PCMD

Valid,VA

EPA

ELD

Plaintext

Code/Data
Valid,REG, LA,

SECS

Version

Invalid

SECS Valid, SECS, LA

/7

Allocating VA

page
Page

eviction

Page

reloading

Build

Code/Data
Enclave

ETRACK

EBLOCK

IPI

Code/Data

36

The Importance of SGX Keys

SGX keys are the foundation for Sealing and Attestation

 Provide isolation between enclaves and platforms

 Provide separation after security bug fixes

 Provide proof of security posture

Keys are 128 bits and unique per:

 CPU and its Security Version Number

 Enclave and its Security Version Number

 Platform owner’s provided entropy (OWNEREPOCH)

Uni-directional - A higher security enclave can recreate keys of a lesser secure
enclave, but not the other way around

37

Sealing key

A persistent general purpose 128-bit key obtained from the EGETKEY leaf

function

Key can be obtained based on different policies:

 Enclave identity – Enclave’s content

 Sealing identity – Enclave’s creator

 Product identity – Enclave product

 Product family identity – Enclave product’s family

ISV defines the key policy based on usage model and security requirements

38

Sealing Example – A digital Wallet

Digital Wallet

Wallet enclave Bitcoin enclave

Credit card

storage

Bitcoin

storage

Product Family Identity

Product Identity Product Identity

Wallet’s

license

Sealing Identity

39

Report key

The key is used for generating a MAC on the enclave’s REPORT information.

 EREPORT uses the key to generate the MAC

 EGETKEY provides the key to the verifying enclave to verify the MAC

The REPORT’s information is the reporting enclave’s information

The REPORT’s MACing key is the verifying enclave’s REPORT key

 The 64-Byte REPORTDATA structure in the REPORT can be used to securely

pass information from the enclave to the verifying enclave

40

Local Attestation and Report Key

How one enclave proves its identity to another enclave on the same platform

 Only works on the same platform

 Typically done both ways for bi-directional trust

Hi, who am I

speaking

to?

It’s me, here’s

my

TARGETINFO

Create a

REPORT MACed

for Verifier

Send REPORT

to verifying

enclave

Retrieve

REPORT key

with EGETKEY

Verify

MAC

Reporting

Enclave

Verifying

Enclave

Verify

REPORT

info

Remote Attestation

 Enclave creates
REPORT

 Quoting enclave
verifies REPORT

 Quoting enclave signs
report with certified
signing key

 Remote party verifies
the Quote

 Remote party checks
the REPORT

 Remote party trusts
enclave

Enclave PvE/QE

Prov. Cert

database

Remote party

Unseal Certs

Quote = Sign(REPORT)

REPORT key

Sealed Signing

key-pair

SEAL key

REPORT QUOTE

 

Enclave

Platform already

provisioned with

signing key-pair

43

44

Optimization vectors

Different usage models drive for different feature extensions

Client Consumer

Client Enterprise

Enclave Developer

Datacenter

Open Source

End User

Research community

45

SGX2 – Enclave Dynamic Memory Management

6 new SGX operations that allows enclaves to securely change after EINIT

 Add memory

 Remove memory

 Change page type or access rights

Examples

 Add more stack/heap

 Garbage collection

 Spawn more threads

 Load a library

46

SGX2 – Security model

EPC operations are performed by the untrusted OS

 Enclave must approve changes made by the OS using the EACCEPT leaf

function

As with SGX1’s page swapping, stale TLB entries must be flushed using the

EPOCH tracking mechanism before access is granted to modified pages

Security model maintained with confidentiality, integrity and anti-replay

 Model allows freeing a page and re-allocating it without allowing replay attacks

47

SGX2 instructions

EAUG – Add a page of zeros

EACCEPT – Approve a change from within the enclave

EACCEPTCOPY – Approve a change and populate a page

EMODT – Modify page type

EMODPR – Modify access rights - Restrict

EMODPE – Modify access rights – Extend

IPIs required after EMODT and EMODPR to ensure stale TLB entries are flushed
out.

EACCEPT enforces compliancy

Adding a pageEnclave active

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave
Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

EPCM

Valid,REG, LA,

SECS

Invalid

Invalid

Valid,REG, LA,

SECS

48

SGX2 – Adding a page 12

EAUG

All zeros
Valid,REG, LA,

SECS, Pending

SECS Valid, SECS, LA

/ 4

Build

Data

Accepting a page from

within the enclave

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave

EENTER

Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

EPCM

Valid,REG, LA,

SECS

Invalid

Invalid

Valid,REG, LA,

SECS

49

SGX2 – Adding a page 3

EAUG

All zeros
Valid,REG, LA,

SECS, Pending

SECS Valid, SECS, LA

/ 4

Build

DataData

All zeros
Valid,REG, LA,

SECS

EACCEPT

4

Reduce page permissionsEnclave activeSet new EPOCH

Virtual Address Space Physical Address Space

System

Memory

Enclave

Page

Cache

Enclave

IPI

Code/Data

Code/Data

Plaintext

Code/Data

Plaintext

Code/Data

EPCM

Valid,REG, LA,

SECS

Invalid

Invalid

Valid,REG, LA,

SECS

50

SGX2 – Changing a Page’s Access Rights123

EMODPR
SECS Valid, SECS, LA

/ 6

Build

EACCEPT

4

Valid,REG, LA,

SECS MODIFIED

Plaintext

Code/Data

Code/Data

ETRACK

Plaintext

Code/Data

Code/Data

EENTER

Flush stale TLBs

56

Code/Data

Plaintext

Code/Data

Enter enclaveApprove changes

52

Launch Control - EINITOKEN key
SGX requires a Launch Enclave to approve each enclave that runs on the platform

 Launch Enclave after Reset is Intel’s, but it can change if CPU supports SGX Launch Configuration

 The Launch Enclave generates an EINIT token that is used by EINIT to initialize enclaves

The EINIT token

 Includes information about the approved enclave

 MACed with the EINITOKEN Key

 Verified by EINIT during enclave initialization

A Launch Enclave is special:

 It has access to the EINITOKEN Key

 It doesn’t require an EINIT token

 It must be signed by the approved author of the Launch Enclave

53

SGX Launch Configuration

Goals

 Allow a platform owner to designate his/her own Launch Enclave

 Allow different enclave launch policies on different virtual machines

Architecture

 Four 64-bit Machine-Specific-Registers hold a 256-bit digest of the approved

Launch Enclave’s public key

 Only the approved Launch Enclave can ask for the EINITTOKEN key

 The digest can be locked at boot time or remain open to allows switching of

Launch Enclaves, e.g. in a virtualized environment

55

Virtualizing EPC

Partitioned model - Simple, but not efficient

 Each VM receives a fixed portion of EPC and has to live with it

 A VM is allowed to swap its EPC pages

 VMM doesn’t need to intercept guest activity

– On VM teardown that VMM needs to ensure all the VM’s EPC pages are free.

– Removing EPC pages is hierarchical, so will might need to perform two passes

Oversubscription model – Allows better datacenter load balancing

 VMM dynamically swaps and allocates pages to VMs on demand

 While the VM might be swapping its EPC pages

 Single EPOCH tracking mechanism can get the VMM confused

– SGX1 VMM will need to intercept VM’s activities. OVERSUB extension reduces the overhead

56

Virtualizing EPC - Challenges

A VMM must know where an enclave’s SECS is to be able to reload its EPC

pages back in

 A VMM would need to intercept all VM’s ECREATE and ELD operations

A VMM must prevent a VM from removing SECS pages, so it could reload child

pages back in

 A VMM would need to intercept all VM’s EWB and EREMOVE operations

Shared use of EPOCH tracking can cause conflict faults in guest VM or in VMM

 A VMM would need to intercept all VM’s ETRACK operations

 A VMM would need to cope with #GP in case of a conflict

57

Virtualizing EPC – OVERSUB Architecture

SGX extension to simplify the Oversubscription virtualization model.

ERDINFO – Provides info about an EPC page and the location of its parent SECS

 VMM will use ERDINFO before evicting a page to know how to put it back

EINCVIRTCHLD, EDECVIRTCHLD – Virtualize the # of child pages of an enclave

 VMM will use EINCVIRTCHLD every time it evicts an EPC page to prevent the guest
from evicting the SECS

ETRACK, ELDU, ELDB – New VMExit on conflicts

 VMM will set this up to be informed whenever the VM is experiencing a resource
conflict with the VMM.

ETRACKC, ELDUC, ELDBC – Conflict safe versions of ETRACK, ELDU and ELDB

 VMM will use these to avoid receiving a General Protection fault in case of a conflict

59

Provisioning - Concept

For remote attestation, platform must certify a signing key-pair with the Provisioning/Attestation
Server

 Intel’s provisioning process uses EPID groups for anonymity.

The PROVISION key is used as the CPU’s identifier for the Provisioning Server

 Intel’s Provisioning infrastructure keeps the PROVISION Keys of all the CPUs it manufactures

Access to key is limited to the Provisioning Enclave

Once provisioning completes, the Provisioning Enclave holds a certified signing key-pair that
confirms the CPU’s authenticity for the specific SVN

 The Provisioning Enclave can use its private key to sign messages to prove to 3rd parties they
originated from a genuine SGX enabled platform at a specific SVN

 In particular, the Provisioning Enclave can sign a REPORT generated by another enclave on the
platform

60

Provisioning process

Symmetric identification

 Provisioning Enclave identifies itself using a derivation of the PROVISION key

 Provisioning Server keeps a copy of all PROVISION keys

Certificate-based identification

 Provisioning Certificate Enclave (PCE) uses a PROVISION-key based private

key to sign a Provisioning blob

 Provisioning Server keeps certificates of all PROVISION-key based public keys

 Sets up the grounds for Datacenter based attestation

 Stronger security allows better scaling of the provisioning infrastructure

61

Attestation

Intel Attestation Service provides a service to 3rd parties to verify Quotes

The server can respond with the following status (sample):

 OK

 GROUP_REVOKED

 GROUP_OUT_OF_DATE

 CONFIGURATION_NEEDED

In case of an issue, the response may include also a Platform Info Blob that

Platform SW can interpret and advise on corrective actions

Attestation & Provisioning

63

Quoting

Enclave
My Enclave

Remote

Party

REPORT QUOTE

Quoting Keys

Provisioning

Enclave

EPID

Provisioning

Server

Attestation

Server

Provisioning

Certification

Enclave

ECDSA

My stuff

Intel

Intel provides a solution

3rd party

Intel

Manufacturing

Device Keys

EPID Groups

EPID Blind Join

Local attestation Remote attestation

Attestation verify

Attestation & Provisioning

64

Quoting

Enclave
My Enclave

Remote

Party

REPORT QUOTE

Quoting Keys

Provisioning

Enclave

EPID

Provisioning

Server

Attestation

Server

Provisioning

Certification

Enclave

ECDSA

My stuff

Intel

Intel provides a solution

3rd party

Intel

Manufacturing

Device Keys

EPID Groups

EPID Blind Join

CPU provisioning

Platform provisioning

65

Recovery and Attestation

A fix is released for a buggy component in the TCB

 It can be SW or FW

The updated component is released with a higher SVN value

 ISV-SVN or CPU-SVN

New keys isolate between the old TCB and the new TCB

 At the new SVN level old sealed secrets can still be accessed by the enclave

Platform SW initiates re-provisioning to join the EPID group that reflects the new
security level

 Without re-provisioning, the platform might be up to date, but 3rd parties won’t
know about it

66

TCB update timelines

Timely bug fixes is important to reduce the denial-of-service window

However, need also to reprovision platform, or else 3rd party vendors won’t know

the true status of the platform

Time

OK Bug
Fix

released

Fix

deployed
Platform

SVN-1TCB SVN-2

SVN-1 SVN-2

Exposure

Window

Platform SVN

Potential

Denial of

Service

67

TCB update timelines

Timely bug fixes is important to reduce the denial-of-service window

However, need also to reprovision platform, or else 3rd party vendors won’t know

the true status of the platform

Time

OK Bug
Fix

released

Fix

deployed
Platform

SVN-1TCB SVN-2

SVN-2

Exposure

Window

Platform SVN

Re-

provision

SVN-1 SVN-2
Potential Denial of

Service

69

From Dream to Reality

Intel started to work on SGX a very long time ago

After several iterations, SGX1 architecture was defined and we started

implementation on the 6th generation Core (codenamed Skylake)

On September 2015 6th generation Core with SGX was announced

Since then

 SGX architecture continues expanding

 Academic researches work hard to evaluate the new technology

 SW vendors start implementing solutions based on SGX for clients and servers

 Cloud Service Providers started offering solutions based on SGX

