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Exploit students

Make lots of money

Terrace!

4 x $100,000 per year



Three observations



Two observations



Observation #1
The awkward relation between security, reliability and efficiency







Security problems often start as reliability issues

Reliability measures may reduce security
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pop %rbx
pop %rsi
ret

pop %rcxadd 
%rbx,%rcxiret

If systems recovers automatically 
from crashes ⇒ just keep trying!

Say we make our program crash resistant





Often, optimization decreases reliability /security



Often, optimization decreases reliability /security

- high-density DRAMs → bit flips
- caching → side channels
- memory deduplication → side channels
- shared TLB → side channels
- speculative execution → meltdown/spectre



Optimization: root of much evil



Observation #2
Physical attacks and software exploitation: colliding worlds
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2010
Security problems are caused by

• Software bugs, and 

• Configuration bugs



2018
Even if the software is perfect

• and well-configured

it is still vulnerable!

What does that mean for

formally verified systems?
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Software 
Exploitation:

2010

Exploits difficult
• Hardening
• Verification



Software 
Exploitation:

2018

How to Find
Memory R/W
Primitives?
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Sharing
is efficient



Software 
Exploitation:

2018

How to Find
Memory R/W
Primitives?
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Sharing
is not caring
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Software 
Exploitation:

2018

Goal: 
Controllable 
from Software



Software 
Exploitation:

2018

Memory RW:
Back to reliable
Exploits!
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Past 10 years



ROP
Small snippets of code ending with a RET

Can be chained together

Code reuse



Crucial requirements

Need: to find address of code (and data)

Need: bugs

This is getting harder
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Want to do this

without the software bugs
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Rowhammer
The rise and rise and rise
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DRAM needs periodic refresh

Row buffer

Row n-1
Row n
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1

0

1

Charge leakage causes bit flips
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Reliability problem!

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0
Or else:

1

0

1

Charge leakage causes bit flips
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But wait!

Row buffer

Row n-1
Row n
Row n+1
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1 1 1 1 1 1

0 0 0 0 0 0
Or else:

1

0

1

Charge leakage causes bit flips
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Rowhammer
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Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 0

Rowhammer

Don’t know in advance which flips, but 
if it flips once, it will flip again
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Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 0

Rowhammer: security problem

Root cause: efficiency fetish



[1] CMU finds first bit flip (2014)
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Rowhammer Evolution
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[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
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[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript
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Rowhammer Evolution

Can we do this on Edge from 
Javascript in realistic settings?



Goal 1

Bug-free Exploitation in Browsers
76



Dedup Est Machina
Published at IEEE S&P 2016

Won Pwnie Award at Black HAT 2016

“Most
Innovative

Research”

Exploit of MS Edge browser on Windows 10 from JavaScript
...without relying on a single software bug



Dedup Est Machina
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Dedup Est Machina
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Memory deduplication
(software side channel)



Dedup Est Machina
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Memory deduplication
(software side channel)

+

Rowhammer
(hardware glitch)

Exploit MS Edge without software bugs
(from JavaScript)

Dedup Est Machina
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Remember

Crucial: 
need to find address of code and data
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Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina: Overview
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Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object
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Dedup Est Machina: Overview



An efficiency measure to reduce physical memory usage

Common in virtualization environments

Enabled by default on Windows
Windows 8.1

Windows 10

Memory Deduplication
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Memory Deduplication:
Mechanics
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95* = Copy-on-write

Memory Deduplication:
Mechanics



Memory Deduplication:

The Problem
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Memory Deduplication:
Timing Side Channel
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Memory Deduplication:

The Problem
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“Can we generalize this to leaking

arbitrary data like randomized pointers?

Memory Deduplication:

Software Exploitation
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Challenge 1:

The secret we want to leak does not span an 
entire memory page

Dedup Est Machina:
Challenges
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Turning a secret into a page
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Turning a secret into a page
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Dedup Est Machina:
Challenges



Challenge 2:

The secret to leak has too much entropy to leak 
it all at once
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Dedup Est Machina:
Challenges
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Only 23 people for a 

50% same- birthday 
chance

You compare everyone 
with everyone else

→  Any match

suffices!

Dedup Est Machina:

Birthday Paradox
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Dedup Est Machina:
Leaking Heap Pointer

Create many Secret Pages
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Dedup Est Machina:
Leaking Heap Pointer

Create many Secret Pages
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Dedup Est Machina:
Leaking Heap Pointer

Create many guesses



If any deduplicated ➔ nailed it!
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Dedup Est Machina:
Leaking Heap Pointer



Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object
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Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

119



Fake JavaScript Uint8Array
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Dedup Est Machina:
Creating a Fake Object



Pointer Pivoting
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Dedup Est Machina:
Creating a Fake Object



Pointer Pivoting
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Dedup Est Machina:
Creating a Fake Object



Cashing in...

Microsoft Bounty Program: $100,000
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Cashing in...

Microsoft Bounty Program: $100,000

“Well, can you refrain from publishing?”

But, but, we observed the 90 days!

“Yes, well. Sorry!”



Only the beginning

What else can we attack?



[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
128

What is missing?
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[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
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What is missing?

What about the cloud?
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Goal 2

Bug-free Exploitation in Clouds
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Flip Feng Shui

131

Ben Gras Kaveh Razavi             Erik Bosman          Bart Preneel            Herbert Bos        Cristiano Giuffrida

USENIX Security 

2017



Published at USENIX Security 2016
with Ben, Kaveh, Erik, Herbert, and Bart (KU Leuven)

System-wide exploits in public KVM clouds
...without relying on a single software bug

Flip Feng Shui



Rowhammer

(hardware glitch)

Flip Feng Shui:

Overview
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Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)
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Rowhammer
(hardware glitch)

+

Memory deduplication
(physical memory massaging primitive)

Cross-VM compromise in public Linux/KVM clouds 
without software bugs

135

Flip Feng Shui:

Overview
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KVM / Clouds

“I determine the 
physical page!”
“I can hammer it!”

SSH?
Check .authorized_keys

Questions: 

What can I flip to gain access?

What pages do I know?





KVM / Clouds

“I determine the 
physical page!”
“I can hammer it!”

We move it to a page susceptible to rowhammer
Questions: 

What can I flip to gain access?

What pages do I know?



Hammer Time!



A bit flips in the pub key

Makes a weak key

Easy to generate private key

⇒We do this in minutes!



Better still?



Updates!

“I determine the 
physical page!”
“I can hammer it!”

How about 
updates 
(APT)? 

Questions: 

What can I flip to gain access?

What pages do I know?



APT
sources.list: from which to 

install packages & updates

debian.org

ubuntu.com



APT
sources.list: from which to 

install packages & updates

debian.org

ubuntu.com

Using dedup, we move sources.list
to page susceptible to rowhammer



Hammer Time!



A bit flips…

Now we install from 

ubunvu.com

ucuntu.com

…

(which we own)

But fortunately, the packages are signed!

Public key of legitimate apt server in “trusted.gpg”





Ben and Kaveh
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BREAKING THE INTERNET

Root causes:
- unreliable DRAM 
- push for efficiency (Dedup)
- bit flip not part of threat model



[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud 

154

Rowhammer Evolution
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[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud 
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Rowhammer Evolution

Is this even possible on ARM?
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Goal 3

Bug-free Exploitation on Phones
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Victor van der Veen1, Yanick Fratantonio2, Martina Lindorfer2, Daniel Gruss3, 
Clémentine Maurice3, Giovanni Vigna2, 
Herbert Bos1, Kaveh Razavi1, and Cristiano Giuffrida1

Drammer:

Deterministic Rowhammer Attacks

on Mobile Platforms

1Vrije Universiteit Amsterdam, 2UC Santa Barbara, 3TU Graz

CCS’16



We did PCs and clouds

Victor was looking for a project

“How about mobile phones?” 
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Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip 
Modify the data structure and get root access
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Rowhammer on ARM

None of the x86 techniques work
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Rowhammer on ARM

None of the x86 techniques work

(We tried)
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Rowhammer on ARM

None of the x86 techniques work

(We tried)

(Really hard)
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Victor went to… Barbados

…and Santa Barbara

164

“I will work on it there.” 



I was worried

1 week. No results.

3 weeks. No results.

1 month. No result.

So I sent an email.

165

Victor went to… Barbados

…and Santa Barbara



Email to 
everyone

Two days later.

Flip. 



Memory templating on ARM

Direct Memory Access
Android’s DMA memory allocator provides everything we need:

Uncached memory (no clflush required)

Physically contiguous memory

DMA ALLOCATED CHUNK

Physical memory:



Victor sent me a picture.
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Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land a page table
Store a page table on a vulnerable page 

3. Reproduce the bit flip 
Modify the data structure and get root acces

But why?



0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

Say we are able to flip bit #14 in a page table entry

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries

PTE: lower 12 bits are properties, so 2nd bit of address



0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

1. Map a page 4 pages ‘away’ from its page table

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries
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0x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17f000

1. Map a page 4 pages ‘away’ from its page table

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries
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1b17f

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17f000

Page Table Mapped Page

1. Map a page 4 pages ‘away’ from its page table

2. Flip bit 2 in the page table entry

Deterministic Attacks on
Page Table Entries
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Virtual address 0xb6a57000 maps to Page Table Entry:
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Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry

3. Write page table entries

Deterministic Attacks on
Page Table Entries
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Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry
3. Write page table entries

4. Read/write kernel memory

Deterministic Attacks on
Page Table Entries



0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

3ac90 3ac91 3ac92 3ac93

3ac94 3ac95 3ac96 1b17b

3ac97 3ac98 3ac99 3ac9a

3ac9b 3ac9c 3ac9d 3ac9e

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry
3. Write page table entries

4. Read/write kernel memory

Deterministic Attacks on
Page Table Entries

Of course, careful Phys Feng Shui 
needed to ensure PT & Page were 
mapped at right address, page



Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip 
Modify the data structure and get root access



Published at CCS 2016

Drammer

Dutch Cyber Security 

Research Paper Award, 2017

https://www.vusec.net/projects/drammer/

PWNIE AWARD!CSAW Best Applied Research



Root causes

Unreliable DRAM

Shared resources

Efficient: give apps direct access to contiguous DMA memory

...
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No Terrace



[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
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But not from Javascript...
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Rowhammer Evolution

Can we do this from Javascript?



Remember: many moving parts…

Including the GPU



Grand Pwning Unit (GPU)

Pietro Frigo Kaveh Razavi Herbert Bos Cristiano Giuffrida

Security & Privacy 2018
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TPU
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3G/4G

GPS

TPU

More co-processors

Greater attack surface

Modern systems
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IOMMU

CPU

GPU

DSP

3G/4G

GPS

TPU
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Access control

- Effective against standard 
exploitation vector

- Fail to address 
microarchitectural attacks

Modern systems



IOMMU

CPU

GPU

DSP

3G/4G

GPS

TPU

209

Access control

- Effective against standard 
exploitation vector

- Fail to address 
microarchitectural attacks

can we use GPU for microarchitectural attacks (RH)?

Modern systems



GPU architecture

1. Read Vertices

2. Read Textures

3. Write to Framebuffer

GPU

DRAM

Vertices  Textures       Framebuffer



GPU architecture

1. Read Vertices

2. Read Textures

3. Write to Framebuffer

GPU

DRAM

Vertices  Textures       Framebuffer

All accessible from JavaScript, thanks to WebGL



Research

1. Reverse engineered architecture (caches!)

➔ to bypass them

2. Build\t highly accurate timers 
➔ needed for side channel 

3. Figured out how to get large contiguous memory areas 

➔ needed for Rowhammer
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End-to-end exploit

A bit like the one in Dedup Est Machina

“Type flipping”

Flip bit in pointer ➔ double ➔read value

Flip bit in double ➔ forge pointer



End-to-end exploit

on phones!

from JavaScript!



End-to-end exploit

on phones!

from JavaScript!$0,-



Goal 5

What about servers?
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Rowhammer Evolution

So far, Rowhammer requires local 
code execution. Can we attack 
servers over the network?
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Throwhammer
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Fast networks

RDMA
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Fast networks

RDMA

We can flip bits over the network
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Fast networks

RDMA

We can flip bits over the network

Moreover, we can exploit server software
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Can we do this on ECC memory?



Goal 6

Flipping bits on ECC memory
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Lucian Cojocar Kaveh Razavi                   Herbert Bos                 Cristiano Giuffrida

Flipping bits on ECC memory



Part II
Side Channels



Software 
Exploitation:

2018

Goal: 
Controllable 
from Software

We have seen this

How about this?



Side channels – what do we want to leak?

Passwords, keys, and other secret user data

Addresses (breaking ASLR)



Cache Side Channels

Intuition only



Prime and Probe

2-way set associative

bar()

foo()

Cache
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Prime and Probe

2-way set associative

bar()

foo()

Cache

for i in key_length:
if (keybit(i) == 1)

foo();
else 

bar ();

Attacker: prime cache sets with data
periodically read same data
if slow: victim must have accessed cache set



But maybe we do not have a key to leak…

We want to leak addresses, to break ASLR



AnC

AKA “Side channeling the MMU”

ASLR ^ Cache 

ASLR on the Line, NDSS’17



Ben Gras
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Code Reuse:

crucial requirement
Need to find address of code (and data)

248



Goal: break ASLR (from Javascript)

Say we have a JS object
• “What are addresses of heap and code?”

Result: 
• ASLR is fundamentally insecure

• Broken without relying on special features/settings
• - Dedup

• - Overcommit

• - Threadspraying



Fundamental
The way modern processors translate VA → PA

• MMU

• PT walks

The way modern systems use caches
• PTs also cached 

Conclusion
Secure ASLR and caching are mutually exclusive

Goal: break ASLR (from Javascript)



Memory organization in Intel



Caches

• Physically tagged

• N-way set associative (e.g., 16)

• 64B cache lines

• LLC is inclusive



Caches

• Physically tagged

• N-way set associative (e.g., 16)

• 64B cache lines

• LLC is inclusive



MMU

TLB translates VA → PA
• Before accessing data or instruction  (cache phys. tagged)

On miss: PT walk 
• For attack, we will clear the TLB to force PT walk



PT Walk



PT Walk

512
entries

 8B →



512
entries

 8B →

ALSR Linux heap: 28 bits

If we know each entry in the PT used in the walk → we know the VA
Each PT level contains 9 bits of entropy
(last level only 1 bit)

PT Walk
Important Observation (1)



PTs are cached too

Each PT contains

212/23 = 29 PTEs

or 29/23 = 64 cache lines

64B cache line (8 PTEs)

Set 1 Set 2



Cache sets



Cache sets



Cache sets

If first cacheline of 2 pages in same cache set
→ All cache lines in the 2 pages share (different) cache set

Same “page color”



32 KB
32 KB

26*215 = 
2MB

23*212 = 32KB

Page Table



Important observation (2)

If we know which cache line of a PT was accessed during PT walk

Gives us 6 of the 9 bits of entropy

“It can be any of these 8 PTEs out of 512 PTEs on page”



What we need

1. Identifying the cache lines that host the PTEs

2. Identifying page offsets of the cache lines

3. Identifying cache line offsets of the PT entries



Intuitively
Say there is only 1 PT and we want the 9 bits for address A

Allocate large number of pages

Evict a target cache line at offset t

• Access all pages at that cacheline offset (also flushes TLBs)

• Time the access to A (+ some offset, to make sure we hit other cache line)

• PT walk begins

• If access takes longer→ this line at offset t must have contained PTE



In reality: more PTs

Two more problems:

• We know the cache line that contains PTE, but of which level?

• We now know cache line: 6 bits. How about remaining 3?

Both problems have same solution: sliding

Say PTL1
• Probe address + 4KB, +8 KB, …, +32KB
• At some point will be on new cacheline in PT (slower access for our data)
• If this happens at +4KB, we know we were the last entry in the line. If it happens at +8KB, we 

were the one before that, etc

If it does not happen at +32KB → higher level

For PTL2, the stride is 2MB
(Note that a cache line switch for PTL2 always also incurs one in PTL1)

As we move up, doing so requires access to memory that is increasingly far apart to do 
the final trick → we must force a cache line switch



How about PTL3 and PTL4?

PTL3 : need 8GB crossing in AS
Problem: we can allocate only 2GB

PTL4 : need 4TB crossing in AS

For these levels we use knowledge about the memory allocators in FF 
and Chrome

See paper for details.

Concl AnC



BTW: we assume we have a timer

So we can measure diff between cached and (non cached) memory 
access from JS

Not trivial (but solved problem): see paper



So…

ASLR fundamentally insecure

Very hard to fix
Page coloring (keep browser memory separate) → hard

Detection (performance counters) → hard

Secure timers → hard

Separate caches → expensive



So…

ASLR fundamentally insecure

Very hard to fix
Page coloring (keep browser memory separate) → hard

Detection (performance counters) → hard

Secure timers → hard

Separate caches → expensive

How much
do you think?



Malicious Management Unit
Why Stopping Cache Attacks in Software 

is Harder Than You Think

USENIX Security’18



Stephan van Schaik





Caches matter

• Caches are shared resources

• Caches can be manipulated

• Spy on other processes

• Input events

• Leak sensitive data 









An example of PRIME + PROBE against AES































AES encrypt used another cache set



`



`



`

AES encrypt used the same cache set



What about defenses?







The magic of page coloring















Victim and attacker are nicely isolated

Or are they?

















XLATE attacks

• Memory Management Unit (MMU)

• Translates virtual addresses into their physical counterparts

• Hence translate or XLATE attacks

• XLATE + PROBE caches page tables instead of pages 



How does the MMU perform page walks?





















Can we do a XLATE+ PROBE?



Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets 



























We reverse engineered size of these tables

Ideal for reducing noise of PT walk







Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages
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Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets 















































Keep going until you have all eviction sets

Also works for page tables



Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets 



Xlate & Probe: the Big Picture

















































XLATE + PROBE bypasses set and way partitioning



Conclusions so far

● Indirect cache attacks are practical

● Must reconsider cache defenses

https://vusec.net/projects/xlate 



Conclusions so far

● Indirect cache attacks are practical

● Must reconsider cache defenses

https://vusec.net/projects/xlate 

Yes.
$0,-



TLBleed

AKA “Side channeling the TLB”

TLBleed, USENIX Security’18



Ben Gras



TLBleeders

Ben Gras               Kaveh Razavi        Cristiano Giuffrida       Herbert Bos
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L1i

Core 1

Side channels

Only possible because of shared resources

Core 2

L1dL1d

L2

L1dL1i

Core 3

L1dL1i

L2 L2 L2

L2

Core 0

L1i 32KB

256KB

6MB



Brief sketch of the cache side channels 
(again)

Cache side channels
(Note: processes share cache)

● memory accesses depend on secret
● signing with RSA: compute md (mod n)
● to do so efficiently: square and multiply

○ iterate over all bits in key
○ square: always
○ multiply if bit is 1

410



Assume shared code

Attacker and victim share a crypto library

Only stored in memory once

Square and multiply at different addresses

411



Flush + Reload



Flush + Reload



Flush + Reload
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Flush + Reload

● Can also attack AES implementation with T tables

● A table lookup happens Tj [xi = pi⊕ ki ]

○ where pi is a plaintext byte, ki a key byte,

415



Defenses
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Partitioning

417

cache



Partitioning
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set

way



Partitioning

419



Partitioning
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Partitioning
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Partitioning

422



Partitioning

423



Partitioning

424



425



A third “defense”

Defenses
Set partitioning: cache colouring

Way partitioning: Intel CAT

Transactions: TSX
• Intended for hardware transactional memory

• But relies on unshared cache activity

• Transactions fit in cache, otherwise auto-abort

• We can use this as a defense



Hyper Threading

427



TLB



TLBleed: 
TLB as shared state?

429



Very complicated 

Many things unknown

We have L1iTLB, L1dTLB, L2sTLB

How are they structured (ways, sets)?

How are they filled?

⇒ Reverse engineering!
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But are they suitable?

Many things unknown

We have L1iTLB, L1dTLB, L2sTLB

How are they structured (ways, sets)?

How are they filled?

⇒ Reverse engineering!
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TLB
L1iTLB ⇒ not shared

L1dTLB ⇒ shared

L2sTLB ⇒ shared

432



Can we use latency as side channel?
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Can we use latency as side channel?
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Let’s do it

435



EdDSA ECC key multiplication
● Scalar is secret and ADD only happens if there’s a 1

436

● But: we can not use code information! Only data..!



Remember Flush+Reload

Traditional attack relies on spatial separation



Let’s try this for the TLB

438

Let’s find the spatial L1 DTLB separation
There isn’t any



Monitor single TLB set for temporal information



Monitor single TLB set for temporal information



Monitor single TLB set for temporal information



Evaluation

Reliability

With cache protection



Conclusion

TLBs are caches too!

Data works as well as code

Temporal attacks work as well as spatial

Reconsider defenses

https://www.vusec.net/projects/tlbleed/



Sharing
is not caring

https://vusec.net

https://vusec.net/


Conclusion

Still no terrace...



We suck at bounty programs

Conclusion



Summary

We can launch Rowhammer attacks from 
• CPU ➔ Javascript on x86, native on ARM

• GPU (!) ➔ Javascript on anything

• Remote devices (!)

We can target PCs, Clouds, Mobile, servers, …

ECC is not enough

[ Use Emacs, not vi ]



Summary

Systems full of active components accessing memory
GPU, MMU, co-processors, devices, … ➔ large attack surface

Also, tremendous amount of shared state
Caches, TLB, BPU state, power, … ➔ large new attack surface

[ No really, Emacs]



Rethink Systems Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation improvements, since 

releasing Edge one year ago, there have been no zero day exploits 

targeting Edge”
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Rethink Systems Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation improvements, since 

releasing Edge one year ago, there have been no zero day exploits 
targeting Edge”

[Aug 4, 17:00] VUSec: “Dedup Est Machina: exploit the latest Microsoft 

Edge with all the defenses up, even in absence of software/configuration 

bugs”



Rethink Systems Security

Formally verified systems
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Rethink Systems Security
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[Aug 10] VUSec: “Flip Feng Shui: Reliable 

exploitation of bug-free software systems”

Formally verified systems



We find vulnerabilities because we are looking

Once found, however basic, a vulnerability quickly expands 

to cover “everything”

Conclusion

https://vusec.net [ Emacs rules! ]

https://vusec.net/


The House is Built on Sand

https://vusec.net

https://vusec.net/

