
The House is Built on Sand
Exploiting Hardware Glitches and Side Channels in Perfect Software

Vrije Universiteit Amsterdam
Herbert Bos

Outline of the talk

•Begin

•Middle

•End

Erik Bosman Kaveh Razavi Victor van der Veen Cristiano Giuffrida Andrei Tatar

Ben Gras Pietro Frigo Dennis Andriesse Lucian Cojocar Radhesh Konoth

James Forshaw

$300,000
PwnFest’16$100,000 Microsoft

$215,000 Pwn2Own

I need a new terrace

Erik Bosman Kaveh Razavi Victor van der Veen Cristiano Giuffrida Andrei Tatar

Ben Gras Pietro Frigo Dennis Andriesse Lucian Cojocar Radhesh Konoth

Erik Bosman Kaveh Razavi Victor van der Veen Cristiano Giuffrida Andrei Tatar

Ben Gras Pietro Frigo Dennis Andriesse Lucian Cojocar Radhesh Konoth

Exploit students

Make lots of money

Terrace!

4 x $100,000 per year

Three observations

Two observations

Observation #1
The awkward relation between security, reliability and efficiency

Security problems often start as reliability issues

Reliability measures may reduce security

pop %rbx
add %rax, %rbx
ret

pop %rbx
add %rax, %rbx
ret

pop %rbx
pop %rsi
ret

pop %rcxadd
%rbx,%rcxiret

you guessed wrong

pop %rbx
pop %rsi
ret

pop %rcxadd
%rbx,%rcxiret

you guessed wrong

Say we make our program crash resistant

pop %rbx
pop %rsi
ret

pop %rcxadd
%rbx,%rcxiret

If systems recovers automatically
from crashes ⇒ just keep trying!

Say we make our program crash resistant

Often, optimization decreases reliability /security

Often, optimization decreases reliability /security

- high-density DRAMs → bit flips
- caching → side channels
- memory deduplication → side channels
- shared TLB → side channels
- speculative execution → meltdown/spectre

Optimization: root of much evil

Observation #2
Physical attacks and software exploitation: colliding worlds

CPU/Mem

• High density
• Caches
• MMU
• TLB

• Embedded
• Smart cards
• Micro controllers

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

CPU/Mem

• Embedded
• Smart cards
• Micro controllers

1985

Van Eck phreaking Timing attacks

1996

Power Analysis

1998

Crypto

Glitch

Side channel +
Hardware attacks

• High density
• Caches
• MMU
• TLB

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

CPU/Mem

• Embedded
• Smart cards
• Micro controllers

1985

Van Eck phreaking Timing attacks

1996

Power Analysis

1998

Software

Complex
Virtualization
Deduplication
Millions of LoC

Buffer
Overflows

1988

Crypto

Smashing
the Stack

Glitch

Side channel +
Hardware attacks

Software
Exploitation

• High density
• Caches
• MMU
• TLB

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

CPU/Mem

• Embedded
• Smart cards
• Micro controllers

1985

Van Eck phreaking Timing attacks

1996

Power Analysis

1998

Software

Complex
Virtualization
Deduplication
Millions of LoC

Buffer
Overflows

1988

Crypto

Smashing
the Stack

1996

Canaries NX ASLR

Code
Reuse

Temporal
attacks

CFI verification …..

Glitch

Side channel +
Hardware attacks

Software
Exploitation

• High density
• Caches
• MMU
• TLB

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

CPU/Mem

• Embedded
• Smart cards
• Micro controllers

1985

Van Eck phreaking Timing attacks

1996

Power Analysis

1998

Software

Complex
Virtualization
Deduplication
Millions of LoC

Buffer
Overflows

1988

Crypto

Canaries NX ASLR CFI verification …..

#@!

Glitch

Side channel +
Hardware attacks

Software
Exploitation Smashing

the Stack

1996

Code
Reuse

Temporal
attacks

• High density
• Caches
• MMU
• TLB

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

CPU/Mem

• Embedded
• Smart cards
• Micro controllers

1956 1985

Van Eck phreaking Timing attacks

1996

Power Analysis

1998

Software

Crypto

NX ASLR CFI verification …..

#@!

Glitch

Complex
Virtualization
Deduplication
Millions of LoC Canaries

Buffer
Overflows

1988

Side channel +
Hardware attacks

Software
Exploitation Smashing

the Stack

1996

Code
Reuse

Temporal
attacks

• High density
• Caches
• MMU
• TLB

• GPU
• TSX
• SGX
• MPX

• Superscalar
• Branch prediction
• DDR3/4
• Prefetch

2010
Security problems are caused by

• Software bugs, and

• Configuration bugs

2018
Even if the software is perfect

• and well-configured

it is still vulnerable!

What does that mean for

formally verified systems?

35

Software
Exploitation:

2010

36

Attacker
Exploits
Vulnerable
Software

Software
Exploitation:

2010

37

Attacker
Exploits
Vulnerable
Software

Software
Exploitation:

2010

38

Attacker
Exploits
Vulnerable
Software

Software
Exploitation:

2010

39

Exploits difficult
• Hardening

Software
Exploitation:

2010

40

Exploits difficult
• Hardening

Software
Exploitation:

2010

41

Software
Exploitation:

2010

Exploits difficult
• Hardening
• Verification

Software
Exploitation:

2018

How to Find
Memory R/W
Primitives?

42

Software
Exploitation:

2018

How to Find
Memory R/W
Primitives?

43

Sharing
is efficient

Software
Exploitation:

2018

How to Find
Memory R/W
Primitives?

44

Sharing
is not caring

Software
Exploitation:

2018

Memory R:
Hw/Sw Side
Channels

45

memory read:
side channels

Software
Exploitation:

2018

Memory W?

46

memory read:
side channels

Glitches
from software

Software
Exploitation:

2018

Memory W?

47

memory read:
side channels

Glitches
from software

Software
Exploitation:

2018

Memory W:
Hardware
Glitches

Software
Exploitation:

2018

Goal:
Controllable
from Software

Software
Exploitation:

2018

Memory RW:
Back to reliable
Exploits!

51

Past 10 years

ROP
Small snippets of code ending with a RET

Can be chained together

Code reuse

Crucial requirements

Need: to find address of code (and data)

Need: bugs

This is getting harder

53

Want to do this

without the software bugs

54

Rowhammer
The rise and rise and rise

56

DRAM

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

57

DRAM

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

Row buffer

58

DRAM needs periodic refresh

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

59

DRAM needs periodic refresh

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0
Or else:

1

0

1

Charge leakage causes bit flips

60

Reliability problem!

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0
Or else:

1

0

1

Charge leakage causes bit flips

61

But wait!

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0
Or else:

1

0

1

Charge leakage causes bit flips

62

Rowhammer

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

63

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

64

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

65

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

66

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

67

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

68

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Rowhammer

69

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 0

Rowhammer

70

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 0

Rowhammer

Don’t know in advance which flips, but
if it flips once, it will flip again

71

Row buffer

Row n-1
Row n
Row n+1

0 0 0 0 0 0

1 1 1 0 1 1

0 0 0 0 0 0

Rowhammer: security problem

Root cause: efficiency fetish

[1] CMU finds first bit flip (2014)

72

Rowhammer Evolution

‘15 ‘16 ‘17 ‘18‘14

[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

73

‘15 ‘16 ‘17 ‘18‘14

Rowhammer Evolution

[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

74

‘15 ‘16 ‘17 ‘18‘14

Rowhammer Evolution

[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

75

‘15 ‘16 ‘17 ‘18‘14

Rowhammer Evolution

Can we do this on Edge from
Javascript in realistic settings?

Goal 1

Bug-free Exploitation in Browsers
76

Dedup Est Machina
Published at IEEE S&P 2016

Won Pwnie Award at Black HAT 2016

“Most
Innovative

Research”

Exploit of MS Edge browser on Windows 10 from JavaScript
...without relying on a single software bug

Dedup Est Machina

78

Erik Bosman Kaveh razavi Herbert Bos Cristiano Giuffrida

Dedup Est Machina

79

Memory deduplication
(software side channel)

Dedup Est Machina

80

Memory deduplication
(software side channel)

+

Rowhammer
(hardware glitch)

Memory deduplication
(software side channel)

+

Rowhammer
(hardware glitch)

Exploit MS Edge without software bugs
(from JavaScript)

Dedup Est Machina

81

Remember

Crucial:
need to find address of code and data

82

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina: Overview

83

Memory deduplication

Leak randomized heap and code pointers

84

Dedup Est Machina: Overview

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

85

Dedup Est Machina: Overview

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

86

Dedup Est Machina: Overview

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

87

Dedup Est Machina: Overview

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

88

Dedup Est Machina: Overview

An efficiency measure to reduce physical memory usage

Common in virtualization environments

Enabled by default on Windows
Windows 8.1

Windows 10

Memory Deduplication

89

Memory Deduplication:
Mechanics

90

91

Memory Deduplication:
Mechanics

92

Memory Deduplication:
Mechanics

93

Memory Deduplication:
Mechanics

94

Memory Deduplication:
Mechanics

95* = Copy-on-write

Memory Deduplication:
Mechanics

Memory Deduplication:

The Problem

96

Memory Deduplication:
Timing Side Channel

97

98

Memory Deduplication:
Timing Side Channel

99

Memory Deduplication:
Timing Side Channel

100

Memory Deduplication:
Timing Side Channel

101

Memory Deduplication:
Timing Side Channel

102

Memory Deduplication:
Timing Side Channel

103

Memory Deduplication:
Timing Side Channel

104

Memory Deduplication:
Timing Side Channel

Memory Deduplication:

The Problem

105

“Can we generalize this to leaking

arbitrary data like randomized pointers?

Memory Deduplication:

Software Exploitation

106

Challenge 1:

The secret we want to leak does not span an
entire memory page

Dedup Est Machina:
Challenges

107

Turning a secret into a page

108

Dedup Est Machina:
Challenges

Turning a secret into a page

109

Dedup Est Machina:
Challenges

Challenge 2:

The secret to leak has too much entropy to leak
it all at once

110

Dedup Est Machina:
Challenges

111

Only 23 people for a

50% same- birthday
chance

You compare everyone
with everyone else

→ Any match

suffices!

Dedup Est Machina:

Birthday Paradox

112

113

Dedup Est Machina:
Leaking Heap Pointer

Create many Secret Pages

114

Dedup Est Machina:
Leaking Heap Pointer

Create many Secret Pages

115

Dedup Est Machina:
Leaking Heap Pointer

Create many Secret Pages

116

Dedup Est Machina:
Leaking Heap Pointer

Create many guesses

If any deduplicated ➔ nailed it!

117

Dedup Est Machina:
Leaking Heap Pointer

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

118

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

119

Fake JavaScript Uint8Array

120

Dedup Est Machina:
Creating a Fake Object

Pointer Pivoting

121

Dedup Est Machina:
Creating a Fake Object

Pointer Pivoting

122

Dedup Est Machina:
Creating a Fake Object

Cashing in...

Microsoft Bounty Program: $100,000

Cashing in...

Microsoft Bounty Program: $100,000

“Well, can you refrain from publishing?”

Cashing in...

Microsoft Bounty Program: $100,000

“Well, can you refrain from publishing?”

But, but, we observed the 90 days!

Cashing in...

Microsoft Bounty Program: $100,000

“Well, can you refrain from publishing?”

But, but, we observed the 90 days!

“Yes, well. Sorry!”

Only the beginning

What else can we attack?

[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
128

What is missing?

‘15 ‘16 ‘17 ‘18‘14

[1] CMU finds first bit flip (2014)

[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)

[3] Rowhammer.js: 1st RH bit flip in JavaScript

[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
129

What is missing?

What about the cloud?

‘15 ‘16 ‘17 ‘18‘14

Goal 2

Bug-free Exploitation in Clouds

130

Flip Feng Shui

131

Ben Gras Kaveh Razavi Erik Bosman Bart Preneel Herbert Bos Cristiano Giuffrida

USENIX Security

2017

Published at USENIX Security 2016
with Ben, Kaveh, Erik, Herbert, and Bart (KU Leuven)

System-wide exploits in public KVM clouds
...without relying on a single software bug

Flip Feng Shui

Rowhammer

(hardware glitch)

Flip Feng Shui:

Overview

133

Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)

134

Flip Feng Shui:

Overview

Rowhammer
(hardware glitch)

+

Memory deduplication
(physical memory massaging primitive)

Cross-VM compromise in public Linux/KVM clouds
without software bugs

135

Flip Feng Shui:

Overview

KVM / Clouds

KSM: Kernel Same-page Merging

KVM / Clouds

KSM: Kernel Same-page Merging

KVM / Clouds

KSM: Kernel Same-page Merging

“I determine the
physical page!”

KVM / Clouds

“I determine the
physical page!”
“I can hammer it!”

KVM / Clouds

“I determine the
physical page!”
“I can hammer it!”

Questions:

What can I flip to gain access?

What pages do I know?

KVM / Clouds

“I determine the
physical page!”
“I can hammer it!”

SSH?
Check .authorized_keys

Questions:

What can I flip to gain access?

What pages do I know?

KVM / Clouds

“I determine the
physical page!”
“I can hammer it!”

We move it to a page susceptible to rowhammer
Questions:

What can I flip to gain access?

What pages do I know?

Hammer Time!

A bit flips in the pub key

Makes a weak key

Easy to generate private key

⇒We do this in minutes!

Better still?

Updates!

“I determine the
physical page!”
“I can hammer it!”

How about
updates
(APT)?

Questions:

What can I flip to gain access?

What pages do I know?

APT
sources.list: from which to

install packages & updates

debian.org

ubuntu.com

APT
sources.list: from which to

install packages & updates

debian.org

ubuntu.com

Using dedup, we move sources.list
to page susceptible to rowhammer

Hammer Time!

A bit flips…

Now we install from

ubunvu.com

ucuntu.com

…

(which we own)

But fortunately, the packages are signed!

Public key of legitimate apt server in “trusted.gpg”

Ben and Kaveh

153

BREAKING THE INTERNET

Root causes:
- unreliable DRAM
- push for efficiency (Dedup)
- bit flip not part of threat model

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud

154

Rowhammer Evolution

‘15 ‘16 ‘17 ‘18‘14

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud

155

Rowhammer Evolution

Is this even possible on ARM?

‘15 ‘16 ‘17 ‘18‘14

Goal 3

Bug-free Exploitation on Phones

156

Victor van der Veen1, Yanick Fratantonio2, Martina Lindorfer2, Daniel Gruss3,
Clémentine Maurice3, Giovanni Vigna2,
Herbert Bos1, Kaveh Razavi1, and Cristiano Giuffrida1

Drammer:

Deterministic Rowhammer Attacks

on Mobile Platforms

1Vrije Universiteit Amsterdam, 2UC Santa Barbara, 3TU Graz

CCS’16

We did PCs and clouds

Victor was looking for a project

“How about mobile phones?”

158

Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip
Modify the data structure and get root access

Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip
Modify the data structure and get root access

Rowhammer on ARM

None of the x86 techniques work

161

Rowhammer on ARM

None of the x86 techniques work

(We tried)

162

Rowhammer on ARM

None of the x86 techniques work

(We tried)

(Really hard)

163

Victor went to… Barbados

…and Santa Barbara

164

“I will work on it there.”

I was worried

1 week. No results.

3 weeks. No results.

1 month. No result.

So I sent an email.

165

Victor went to… Barbados

…and Santa Barbara

Email to
everyone

Two days later.

Flip.

Memory templating on ARM

Direct Memory Access
Android’s DMA memory allocator provides everything we need:

Uncached memory (no clflush required)

Physically contiguous memory

DMA ALLOCATED CHUNK

Physical memory:

Victor sent me a picture.

169

Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip
Modify the data structure and get root access

Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land a page table
Store a page table on a vulnerable page

3. Reproduce the bit flip
Modify the data structure and get root acces

But why?

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

Say we are able to flip bit #14 in a page table entry

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries

PTE: lower 12 bits are properties, so 2nd bit of address

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

1. Map a page 4 pages ‘away’ from its page table

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries

0x1b17f000

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 x x x x x x x x x x x x

0x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17f000

1. Map a page 4 pages ‘away’ from its page table

Page Table Mapped Page

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17f

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17f000

Page Table Mapped Page

1. Map a page 4 pages ‘away’ from its page table

2. Flip bit 2 in the page table entry

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17b

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table

2. Flip bit 2 in the page table entry

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

1b17b

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry

3. Write page table entries

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

3ac90 3ac91 3ac92 3ac93

3ac94 3ac95 3ac96 1b17b

3ac97 3ac98 3ac99 3ac9a

3ac9b 3ac9c 3ac9d 3ac9e

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry

3. Write page table entries

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

3ac90 3ac91 3ac92 3ac93

3ac94 3ac95 3ac96 1b17b

3ac97 3ac98 3ac99 3ac9a

3ac9b 3ac9c 3ac9d 3ac9e

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry
3. Write page table entries

4. Read/write kernel memory

Deterministic Attacks on
Page Table Entries

0x1b17f0000x1b17d0000x1b17c0000x1b17b000 0x1b17e000

3ac90 3ac91 3ac92 3ac93

3ac94 3ac95 3ac96 1b17b

3ac97 3ac98 3ac99 3ac9a

3ac9b 3ac9c 3ac9d 3ac9e

0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 x x x x x x x x x x x x

Virtual address 0xb6a57000 maps to Page Table Entry:

which translates to physical page 0x1b17b000

Mapped Page Table

1. Map a page 4 pages ‘away’ from its page table
2. Flip bit 2 in the page table entry
3. Write page table entries

4. Read/write kernel memory

Deterministic Attacks on
Page Table Entries

Of course, careful Phys Feng Shui
needed to ensure PT & Page were
mapped at right address, page

Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a crucial data structure on a vulnerable page

3. Reproduce the bit flip
Modify the data structure and get root access

Published at CCS 2016

Drammer

Dutch Cyber Security

Research Paper Award, 2017

https://www.vusec.net/projects/drammer/

PWNIE AWARD!CSAW Best Applied Research

Root causes

Unreliable DRAM

Shared resources

Efficient: give apps direct access to contiguous DMA memory

...

Disclosure
Contacted Google with a list of suggested mitigations on July 25

Disclosure
Contacted Google with a list of suggested mitigations on July 25

(91 days before #CCS16)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

“Can you publish at another conference, later this year?”

(91 days before #CCS16)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

“Can you publish at another conference, later this year?”

“What if we support you financially?”

(91 days before #CCS16)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

“Ok, could you then perhaps obfuscate some parts of the paper?”

(91 days before #CCS16)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

“Ok, could you then perhaps obfuscate some parts of the paper?”

Rewarded $4000 for a critical issue

(91 days before #CCS16)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

“Ok, could you then perhaps obfuscate some parts of the paper?”

Rewarded $4000 for a critical issue

(91 days before #CCS16)

(because “it doesn’t work on the devices in our Reward Program”)

Disclosure
Contacted Google with a list of suggested mitigations on July 25

Rewarded $4000 for a critical issue

(91 days before #CCS16)

(because “it doesn’t work on the devices in our Reward Program”)

Now it does

“Ok, could you then perhaps obfuscate some parts of the paper?”

Disclosure
Contacted Google with a list of suggested mitigations on July 25

Rewarded $4000 for a critical issue

Partial hardening in November’s updates

(91 days before #CCS16)

“We will continue to work on a longer term solution”

“Ok, could you then perhaps obfuscate some parts of the paper?”

Disclosure
Contacted Google with a list of suggested mitigations on July 25

Rewarded $4000 for a critical issue

Partial hardening in November’s updates

(91 days before #CCS16)

“We will continue to work on a longer term solution”

“Ok, could you then perhaps obfuscate some parts of the paper?”$4000,-
4 months of work
9 people

Disclosure
Contacted Google with a list of suggested mitigations on July 25

Rewarded $4000 for a critical issue

Partial hardening in November’s updates

(91 days before #CCS16)

“We will continue to work on a longer term solution”

“Ok, could you then perhaps obfuscate some parts of the paper?”$4000,-
4 months of work
9 people

No Terrace

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android

195

Rowhammer Evolution

‘15 ‘16 ‘17 ‘18‘14

But not from Javascript...

Goal 4

Bug-free exploitation on Phones

from Javascript 197

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android

198

Can we do this from Javascript?

‘15 ‘16 ‘17 ‘18‘14

Rowhammer Evolution

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android

199

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14

Rowhammer Evolution

Can we do this from Javascript?

Remember: many moving parts…

Including the GPU

Grand Pwning Unit (GPU)

Pietro Frigo Kaveh Razavi Herbert Bos Cristiano Giuffrida

Security & Privacy 2018

Modern systems

Modern systems

CPU

Modern systems

CPU

GPU

DSP

3G/4G

GPS

TPU

Modern systems

CPU

GPU

DSP

3G/4G

GPS

TPU

More co-processors

Greater attack surface

Modern systems

CPU

GPU

DSP

3G/4G

GPS

TPU

IOMMU

Access control

- Effective against standard
exploitation vector

Modern systems

IOMMU

CPU

GPU

DSP

3G/4G

GPS

TPU

208

Access control

- Effective against standard
exploitation vector

- Fail to address
microarchitectural attacks

Modern systems

IOMMU

CPU

GPU

DSP

3G/4G

GPS

TPU

209

Access control

- Effective against standard
exploitation vector

- Fail to address
microarchitectural attacks

can we use GPU for microarchitectural attacks (RH)?

Modern systems

GPU architecture

1. Read Vertices

2. Read Textures

3. Write to Framebuffer

GPU

DRAM

Vertices Textures Framebuffer

GPU architecture

1. Read Vertices

2. Read Textures

3. Write to Framebuffer

GPU

DRAM

Vertices Textures Framebuffer

All accessible from JavaScript, thanks to WebGL

Research

1. Reverse engineered architecture (caches!)

➔ to bypass them

2. Build\t highly accurate timers
➔ needed for side channel

3. Figured out how to get large contiguous memory areas

➔ needed for Rowhammer

212

End-to-end exploit

A bit like the one in Dedup Est Machina

“Type flipping”

Flip bit in pointer ➔ double ➔read value

Flip bit in double ➔ forge pointer

End-to-end exploit

on phones!

from JavaScript!

End-to-end exploit

on phones!

from JavaScript!$0,-

Goal 5

What about servers?

216

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
[7] Grand Pwning Unit: attack from the GPU (faster!) 217

Rowhammer Evolution

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
[7] Grand Pwning Unit: attack from the GPU (faster!) 218

Rowhammer Evolution

So far, Rowhammer requires local
code execution. Can we attack
servers over the network?

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14

Throwhammer

220

Fast networks

RDMA

221

Fast networks

RDMA

We can flip bits over the network

222

Fast networks

RDMA

We can flip bits over the network

Moreover, we can exploit server software

223

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
[7] Grand Pwning Unit: attack from the GPU (faster!)
[8] Throwhammer: attack servers over the network

Rowhammer Evolution

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14 $0,-

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
[7] Grand Pwning Unit: attack from the GPU (faster!)
[8] Throwhammer: attack servers over the network

What is missing?

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14

[1] CMU finds first bit flip (2014)
[2] Google Project Zero: 1st Rowhammer root Exploit (flipping PTEs)
[3] Rowhammer.js: 1st RH bit flip in JavaScript
[4] Dedup est Machina: Breaking Microsoft Edge’s sandbox
[5] Flip Feng Shui: Breaking the cloud
[6] Drammer: rooting android
[7] Grand Pwning Unit: attack from the GPU (faster!)
[8] Throwhammer: attack servers over the network

What is missing?

‘15 ‘16 ‘17 ‘18

@#!$!%&!

‘14

Can we do this on ECC memory?

Goal 6

Flipping bits on ECC memory

227

Lucian Cojocar Kaveh Razavi Herbert Bos Cristiano Giuffrida

Flipping bits on ECC memory

Part II
Side Channels

Software
Exploitation:

2018

Goal:
Controllable
from Software

We have seen this

How about this?

Side channels – what do we want to leak?

Passwords, keys, and other secret user data

Addresses (breaking ASLR)

Cache Side Channels

Intuition only

Prime and Probe

2-way set associative

bar()

foo()

Cache

Prime and Probe

for i in key_length:
if (keybit(i) == 1)

foo();
else

bar ();

2-way set associative

bar()

foo()

Cache

Prime and Probe

2-way set associative

bar()

foo()

Cache

for i in key_length:
if (keybit(i) == 1)

foo();
else

bar ();

Prime and Probe

2-way set associative

bar()

foo()

Cache

for i in key_length:
if (keybit(i) == 1)

foo();
else

bar ();

Attacker: prime cache sets with data

Prime and Probe

2-way set associative

bar()

foo()

Cache

for i in key_length:
if (keybit(i) == 1)

foo();
else

bar ();

Attacker: prime cache sets with data
periodically read same data

Prime and Probe

2-way set associative

bar()

foo()

Cache

for i in key_length:
if (keybit(i) == 1)

foo();
else

bar ();

Attacker: prime cache sets with data
periodically read same data
if slow: victim must have accessed cache set

But maybe we do not have a key to leak…

We want to leak addresses, to break ASLR

AnC

AKA “Side channeling the MMU”

ASLR ^ Cache

ASLR on the Line, NDSS’17

Ben Gras

248

Code Reuse:

crucial requirement
Need to find address of code (and data)

248

Goal: break ASLR (from Javascript)

Say we have a JS object
• “What are addresses of heap and code?”

Result:
• ASLR is fundamentally insecure

• Broken without relying on special features/settings
• - Dedup

• - Overcommit

• - Threadspraying

Fundamental
The way modern processors translate VA → PA

• MMU

• PT walks

The way modern systems use caches
• PTs also cached

Conclusion
Secure ASLR and caching are mutually exclusive

Goal: break ASLR (from Javascript)

Memory organization in Intel

Caches

• Physically tagged

• N-way set associative (e.g., 16)

• 64B cache lines

• LLC is inclusive

Caches

• Physically tagged

• N-way set associative (e.g., 16)

• 64B cache lines

• LLC is inclusive

MMU

TLB translates VA → PA
• Before accessing data or instruction (cache phys. tagged)

On miss: PT walk
• For attack, we will clear the TLB to force PT walk

PT Walk

PT Walk

512
entries

 8B →

512
entries

 8B →

ALSR Linux heap: 28 bits

If we know each entry in the PT used in the walk → we know the VA
Each PT level contains 9 bits of entropy
(last level only 1 bit)

PT Walk
Important Observation (1)

PTs are cached too

Each PT contains

212/23 = 29 PTEs

or 29/23 = 64 cache lines

64B cache line (8 PTEs)

Set 1 Set 2

Cache sets

Cache sets

Cache sets

If first cacheline of 2 pages in same cache set
→ All cache lines in the 2 pages share (different) cache set

Same “page color”

32 KB
32 KB

26*215 =
2MB

23*212 = 32KB

Page Table

Important observation (2)

If we know which cache line of a PT was accessed during PT walk

Gives us 6 of the 9 bits of entropy

“It can be any of these 8 PTEs out of 512 PTEs on page”

What we need

1. Identifying the cache lines that host the PTEs

2. Identifying page offsets of the cache lines

3. Identifying cache line offsets of the PT entries

Intuitively
Say there is only 1 PT and we want the 9 bits for address A

Allocate large number of pages

Evict a target cache line at offset t

• Access all pages at that cacheline offset (also flushes TLBs)

• Time the access to A (+ some offset, to make sure we hit other cache line)

• PT walk begins

• If access takes longer→ this line at offset t must have contained PTE

In reality: more PTs

Two more problems:

• We know the cache line that contains PTE, but of which level?

• We now know cache line: 6 bits. How about remaining 3?

Both problems have same solution: sliding

Say PTL1
• Probe address + 4KB, +8 KB, …, +32KB
• At some point will be on new cacheline in PT (slower access for our data)
• If this happens at +4KB, we know we were the last entry in the line. If it happens at +8KB, we

were the one before that, etc

If it does not happen at +32KB → higher level

For PTL2, the stride is 2MB
(Note that a cache line switch for PTL2 always also incurs one in PTL1)

As we move up, doing so requires access to memory that is increasingly far apart to do
the final trick → we must force a cache line switch

How about PTL3 and PTL4?

PTL3 : need 8GB crossing in AS
Problem: we can allocate only 2GB

PTL4 : need 4TB crossing in AS

For these levels we use knowledge about the memory allocators in FF
and Chrome

See paper for details.

Concl AnC

BTW: we assume we have a timer

So we can measure diff between cached and (non cached) memory
access from JS

Not trivial (but solved problem): see paper

So…

ASLR fundamentally insecure

Very hard to fix
Page coloring (keep browser memory separate) → hard

Detection (performance counters) → hard

Secure timers → hard

Separate caches → expensive

So…

ASLR fundamentally insecure

Very hard to fix
Page coloring (keep browser memory separate) → hard

Detection (performance counters) → hard

Secure timers → hard

Separate caches → expensive

How much
do you think?

Malicious Management Unit
Why Stopping Cache Attacks in Software

is Harder Than You Think

USENIX Security’18

Stephan van Schaik

Caches matter

• Caches are shared resources

• Caches can be manipulated

• Spy on other processes

• Input events

• Leak sensitive data

An example of PRIME + PROBE against AES

AES encrypt used another cache set

`

`

`

AES encrypt used the same cache set

What about defenses?

The magic of page coloring

Victim and attacker are nicely isolated

Or are they?

XLATE attacks

• Memory Management Unit (MMU)

• Translates virtual addresses into their physical counterparts

• Hence translate or XLATE attacks

• XLATE + PROBE caches page tables instead of pages

How does the MMU perform page walks?

Can we do a XLATE+ PROBE?

Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets

We reverse engineered size of these tables

Ideal for reducing noise of PT walk

Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets

Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets

Keep going until you have all eviction sets

Also works for page tables

Challenges

● Avoid noise from high-level page tables

● Avoid noise from pages

● Build eviction sets

Xlate & Probe: the Big Picture

XLATE + PROBE bypasses set and way partitioning

Conclusions so far

● Indirect cache attacks are practical

● Must reconsider cache defenses

https://vusec.net/projects/xlate

Conclusions so far

● Indirect cache attacks are practical

● Must reconsider cache defenses

https://vusec.net/projects/xlate

Yes.
$0,-

TLBleed

AKA “Side channeling the TLB”

TLBleed, USENIX Security’18

Ben Gras

TLBleeders

Ben Gras Kaveh Razavi Cristiano Giuffrida Herbert Bos

407

L1i

Core 1

Side channels

Only possible because of shared resources

Core 2

L1dL1d

L2

L1dL1i

Core 3

L1dL1i

L2 L2 L2

L2

Core 0

L1i 32KB

256KB

6MB

Brief sketch of the cache side channels
(again)

Cache side channels
(Note: processes share cache)

● memory accesses depend on secret
● signing with RSA: compute md (mod n)
● to do so efficiently: square and multiply

○ iterate over all bits in key
○ square: always
○ multiply if bit is 1

410

Assume shared code

Attacker and victim share a crypto library

Only stored in memory once

Square and multiply at different addresses

411

Flush + Reload

Flush + Reload

Flush + Reload

414

Flush + Reload

● Can also attack AES implementation with T tables

● A table lookup happens Tj [xi = pi⊕ ki]

○ where pi is a plaintext byte, ki a key byte,

415

Defenses

416

Partitioning

417

cache

Partitioning

418

set

way

Partitioning

419

Partitioning

420

Partitioning

421

Partitioning

422

Partitioning

423

Partitioning

424

425

A third “defense”

Defenses
Set partitioning: cache colouring

Way partitioning: Intel CAT

Transactions: TSX
• Intended for hardware transactional memory

• But relies on unshared cache activity

• Transactions fit in cache, otherwise auto-abort

• We can use this as a defense

Hyper Threading

427

TLB

TLBleed:
TLB as shared state?

429

Very complicated

Many things unknown

We have L1iTLB, L1dTLB, L2sTLB

How are they structured (ways, sets)?

How are they filled?

⇒ Reverse engineering!

430

But are they suitable?

Many things unknown

We have L1iTLB, L1dTLB, L2sTLB

How are they structured (ways, sets)?

How are they filled?

⇒ Reverse engineering!

431

TLB
L1iTLB ⇒ not shared

L1dTLB ⇒ shared

L2sTLB ⇒ shared

432

Can we use latency as side channel?

433

Can we use latency as side channel?

434

Let’s do it

435

EdDSA ECC key multiplication
● Scalar is secret and ADD only happens if there’s a 1

436

● But: we can not use code information! Only data..!

Remember Flush+Reload

Traditional attack relies on spatial separation

Let’s try this for the TLB

438

Let’s find the spatial L1 DTLB separation
There isn’t any

Monitor single TLB set for temporal information

Monitor single TLB set for temporal information

Monitor single TLB set for temporal information

Evaluation

Reliability

With cache protection

Conclusion

TLBs are caches too!

Data works as well as code

Temporal attacks work as well as spatial

Reconsider defenses

https://www.vusec.net/projects/tlbleed/

Sharing
is not caring

https://vusec.net

https://vusec.net/

Conclusion

Still no terrace...

We suck at bounty programs

Conclusion

Summary

We can launch Rowhammer attacks from
• CPU ➔ Javascript on x86, native on ARM

• GPU (!) ➔ Javascript on anything

• Remote devices (!)

We can target PCs, Clouds, Mobile, servers, …

ECC is not enough

[Use Emacs, not vi]

Summary

Systems full of active components accessing memory
GPU, MMU, co-processors, devices, … ➔ large attack surface

Also, tremendous amount of shared state
Caches, TLB, BPU state, power, … ➔ large new attack surface

[No really, Emacs]

Rethink Systems Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation improvements, since

releasing Edge one year ago, there have been no zero day exploits

targeting Edge”

449

Rethink Systems Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation improvements, since

releasing Edge one year ago, there have been no zero day exploits
targeting Edge”

[Aug 4, 17:00] VUSec: “Dedup Est Machina: exploit the latest Microsoft

Edge with all the defenses up, even in absence of software/configuration

bugs”

Rethink Systems Security

Formally verified systems

451

Rethink Systems Security

452

[Aug 10] VUSec: “Flip Feng Shui: Reliable

exploitation of bug-free software systems”

Formally verified systems

We find vulnerabilities because we are looking

Once found, however basic, a vulnerability quickly expands

to cover “everything”

Conclusion

https://vusec.net [Emacs rules!]

https://vusec.net/

The House is Built on Sand

https://vusec.net

https://vusec.net/

