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What is this talk about

• Example of a hardware attack process 

• Focus on what didn’t work and the hard labor 
• You can read about the other stuff in the paper
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Typical IoT devices: Philips Hue Smart Lights

• Mature technology and standards, a relatively simple system

• A high end product with high end security, but…
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Creating a lightbulb  worm

• We have proven the possibility of  creating a worm 
which spreads using only the standard ZigBee wireless 
interface
• Taking over a preinstalled smart light
• Spreading everywhere
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The underlying ZLL protocol

• Each installed light is connected to a central controller using the ZigBee 
Light Link (ZLL) wireless protocol in a Personal Area Network (PAN)

• The bridge is connected to a secure home/ office network, and is 
controlled by a smartphone app via IP

• It enables each authorized user to turn each light on or off, to change 
the light intensity, and to set its color



• ZigBee Pro

• ZigBee HA

• ZigBee ZLL

• ZigBee OTA Update

• ….

The fun world of standards



class ScanRespPkt(PktParser):

def _reset(self):

PktParser.__init__(self, 'ScanRespPkt', [UINT32('Trans ID'), UINT8('RSSI correction'), UINT8('Zigbee Info'),

UINT8('ZLL info'), UINT16('Key bitmask'), UINT32('Resp ID'),

UINT64('Extended PAN identifier IEEE address'),

UINT8('Network update identifier'),UINT8(' Logical channel'),

UINT16('PAN identifier'), UINT16('Network address'),

UINT8('Number of sub-devices'), UINT8('Total group identifier')])

self._tail = PktParser('', [UINT8('Endpoint identifier'), UINT16('Profile identifier'),

UINT16('Device identifier'), UINT8('Version'), UINT8('Group identifier count')])

def __init__(self):

self._reset()

def unpack(self, raw):

self._reset()

raw = PktParser.unpack(self, raw)

if(self['Number of sub-devices']['val'] == 1):

raw = self._tail.unpack(raw)

self.update(self._tail)

ZLLInterPanState['Cur RespID'] = self['Resp ID']['val']

return raw

def pack(self, list):

self._reset()

PktParser.pack(self, list[0:13])

if(self['Number of sub-devices']['val'] == 1):

self._tail.pack(list[13:])

self.update(self._tail)

ZLLInterPanState['Cur RespID'] = self['Resp ID']['val']





Philps Hue Lamp 
Teardown





Boot sequence debug printout 
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Challenges in taking over a 
preinstalled smart light

• ZigBee Light Link standard uses multiple 
cryptographic and security protocols to prevent 
misuse

• In particular, uses a proximity test to make sure that 
the only way to take control of an already installed 
Hue lamp is by operating it within 10-20 cm from its 
new controller
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Scan Response 

Network Start (Transaction ID)

Reset to Factory New (Transaction ID)

Proximity Test
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Protocol Implementation Bug
• We want to cause the light to Reset to Factory New

• Can’t set a valid Transaction ID due to proximity test

Non-Zero
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The case of ZERO (day)
• How is  the Session data is saved in memory?

• What is default values in the struct?
• Well surely it is 

checked on access…
• Just on Scan Request

message



Protocol Attack Outline

Controller LampFactory Reset (Transaction ID=0)



We bought a cheap and lightweight 
commercial Zigbee evaluation kit:

CarFast.mp4


ZigBee WarFlying -
Taking over a building’s lights 

By launching a drone carrying 
a fully automated attack 
equipment 400 meters away 

DroneShorter.mp4


second warflying video here



Spreading everywhere
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Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and 
relatively good code

• Lets use the software update
• No software updates for my lights
• Can’t buy the older models
• Start with the bridge



First try – older TI based model
The one that got away









• Try to connect, it is locked
for debug and read





Looking at EBL source: https://github.com/lee-wei/CC2540/blob/master/Projects/ble/util/EBL/app/sbl_exec.c

static void aesLoadKey(void)
{

// Read the security key from flash 1 byte at a time to thwart an 
interrupt & read XDATA attack.

uint8 *keyPtr = (uint8 *)aesKey;

ENCCS = ECB | AES_LOAD_KEY | 0x01;

// 'while ((ENCCS & BV(3)) == 0)' was seen to hang without #pragma optimize=none.
// So proactively adding this wait after every 'ENCCS = ' which empirically seems to work.
ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP;

for (uint8 cnt = 0; cnt < KEY_BLENGTH; cnt++)
{
ENCDI = *keyPtr++;

}
}

https://github.com/lee-wei/CC2540/blob/master/Projects/ble/util/EBL/app/sbl_exec.c


Inner bridge software update
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Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!
• Need to find the sweet spot - Low enough to 

corrupt data, high enough to not reset:
• External Capacitors
• Internal capacity
• Brownout detector



Glitch attack
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Glitch attack
• Use Arduino PWM output – semi success 
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug
• Reset
• Chip erased
• A new undocumented state

• Could try fuzzing, or use better glitching source



Second try - Atmel
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Getting software updates

• No software update for Atmel based lamps
• So lets impersonate as an older model and version
• Looked for posting on upgrades on the Internet (mainly Reddit)



Known upgrades (From Internet Posts)

66009663 -> 66013452 

65003148 -> 66013452 (recorded with type 100)

66010820 -> 66012457 (recorded with type 104) (GU10)

65003148 -> 66012457 (recorded with type 104) (GU10)

65003148 -> 66013452 (recorded with type 103)

Getting software updates

• No software update for Atmel based lamps
• So lets impersonate as an older model and version
• Looked for posting on upgrades on the Internet (mainly Reddit)
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Human to machine translation

• We sniff normal communication, version is encoded differently 
• Record all version we bought

Model number string hex Ar|Ab|Sr|Sb hex Led Image Type in Req

LCT001 66013452 5.23.1.13452

LCT001 66010820 5.8.1.10820 66 0 2a 44

LCT001 66013187 5.23.1.13187 5.23.1.0x3383 66 0 51 131 42 0 33 83 Old Hue 0x0104

LWB004 

Lux

66012040 5.17.1.12040 5.17.1.0x2f08 66 0 47 8 42 0 2f 08 0x0105

LWB006 

HUE 

WHITE

66015095 5.38.1.15095 5.38.1.0x3AF7 66 0 58 247 42 0 3A F7

LCT001 66009663 5.8.1.9663

Or 5.23.1.9663

.0x25bf 42 0 25 bf

LCT001 65003148 41 0 0c 4c

HML004 66014169

LCT007 66014919 5.38.1.14919 5.38.1.0x3A47 66 0 58 71 42 0 3A 47 New Controller 2NG



Human to machine translation

• We sniff normal communication, version is encoded differently 
• Record all version we bought

• 66012040 – 66 0 12040 – 0x42 0x00 0x2f08 – 0x42 0x00 0x2f 0x08

Model number string hex Ar|Ab|Sr|Sb hex Led Image Type in Req

LCT001 66013452 5.23.1.13452

LCT001 66010820 5.8.1.10820 66 0 2a 44

LCT001 66013187 5.23.1.13187 5.23.1.0x3383 66 0 51 131 42 0 33 83 Old Hue 0x0104

LWB004 

Lux

66012040 5.17.1.12040 5.17.1.0x2f08 66 0 47 8 42 0 2f 08 0x0105

LWB006 

HUE 

WHITE

66015095 5.38.1.15095 5.38.1.0x3AF7 66 0 58 247 42 0 3A F7

LCT001 66009663 5.8.1.9663

Or 5.23.1.9663

.0x25bf 42 0 25 bf

LCT001 65003148 41 0 0c 4c

HML004 66014169

LCT007 66014919 5.38.1.14919 5.38.1.0x3A47 66 0 58 71 42 0 3A 47 New Controller 2NG
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Light impersonating 

• Write impersonating code, to identify as old models
• Sniff OTA updates on Zigbee and on bridge

• They are encrypted 
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Start OTA attack

• Try to load old firmware to new bulb using OTA 
protocol
• Failed on file Type – fix
• Failed on file Size – fix

• Start OTA – get invalid version msg after first block
• Change block size to one
• Failed after 56 bytes – Zigbee OTA header size
• Fix type and size in header – OTA started and failed
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Start the 
OTA 
process

Read 
Philips
File 
Header

Cleanup
After
Failure



Downloaded firmwares
GU10=           '2A00010000665214100217303903EF402E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

Connected=      '2A00010000665214100217303903EF402E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

ConnectedFixed= '2A0001040066521410021730390002002E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

LivingColors=   '2A00010300696114110316380703E88011B6996E648CE50CF315CBC2A810C5D26301FD1E5E1E201005823C9AEFAC7185

fw01016441STM='2A00010201F43E1408281633310618809DB509B3F6E9326D6F8FD2089ECB375D47A6654262B77352C33AAAFD2DB492200541793

fw01018228STM='2A00010201F42614101511592405EFC0EC546C95824A01524E08D5B3D8CCDAA293C7BC8ECC28087059D6D621CFD80178

fw01024156STM='2A00010201F4D5150404131056060840A84D129BFF0172734E64CD06CC0D0D37507B920B5B7FF6957584CD077111BDE

fw01029624STM='2A00010201F44D15111722204406A3402EECED20A08438712C2BEF1C815DC534819CB82B3067AAA555E575DF9203B3DE

fw01029624='2A00010100668C151117222038037E8013CE617BE6A3732061E15FDEDC6B0BBF5F165BF1238F173894AF1AFE3DB8A02740

fw01024156='2A0001010066A5150404131053036EC025C053D8B1D93161F218DDE77DF30570EA03C753D16EA8A7DEA13F7F82370F78EAC

fw01030262='2A0001010066CB151216151233037E802D4A27D63C496DB253809EB7CC57E195A31A1A8054E1012883DA24B57E4BAD45379052

fw01018228='2A0001010066F5141015115920036BC0290FE89BA8EE70D3C0AF5324306D168C8BA71810EFFD738723B41E12B252C2A2D6

fw01016441='2A0001010066FD140828163329036BC00A2CDADABFD5C4DBCBE11EBE0066012F4667D2327D2915DE9F8525599793F2065D

fw01016441STM='2A00010201F43E1408281633310618809DB509B3F6E9326D6F8FD2089ECB375D47A6654262B77352C33AAAFD2DB492200541793

fw01016441='2A0001010066FD140828163329036BC00A2CDADABFD5C4DBCBE11EBE0066012F4667D2327D2915DE9F8525599793F2065D

fw01018228STM='2A00010201F42614101511592405EFC0EC546C95824A01524E08D5B3D8CCDAA293C7BC8ECC28087059D6D621CFD80178

fw01018228='2A0001010066F5141015115920036BC0290FE89BA8EE70D3C0AF5324306D168C8BA71810EFFD738723B41E12B252C2A2D6

fw01024156STM='2A00010201F4D5150404131056060840A84D129BFF0172734E64CD06CC0D0D37507B920B5B7FF6957584CD077111BDE

fw01024156='2A0001010066A5150404131053036EC025C053D8B1D93161F218DDE77DF30570EA03C753D16EA8A7DEA13F7F82370F78EAC

fw01029624STM='2A00010201F44D15111722204406A3402EECED20A08438712C2BEF1C815DC534819CB82B3067AAA555E575DF9203B3DE

fw01029624='2A00010100668C151117222038037E8013CE617BE6A3732061E15FDEDC6B0BBF5F165BF1238F173894AF1AFE3DB8A02740

fw01030262='2A0001010066CB151216151233037E802D4A27D63C496DB253809EB7CC57E195A31A1A8054E1012883DA24B57E4BAD45379052



GU10=           '2A00 0100 00 6652 141002 173039 03EF40

LivingColors=   '2A00 0103 00 6961 141103 163807 03E880

fw01016441STM=  '2A00 0102 01 F43E 140828 163331 061880

fw01018228STM=  '2A00 0102 01 F426 141015 115924 05EFC0

fw01024156STM=  '2A00 0102 01 F4D5 150404 131056 060840



Correlation power analysis



Power Analysis Example Setup



CPA for RE
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Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM
Jaffe 07
Requires 2^16 blocks



Block Cipher Encryption

Ciphertext (CTM)

  

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

Plaintext (PTM)

CBC State m (CBCM)

Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM
O’Flynn & Chen
Chosen Nonce



Block Cipher Encryption

Ciphertext (CTM)

  

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)
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Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM

ECB - modified key



Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

CBC State m (CBCM)

New CPA attack on CCM



  

Block m  Const

Block Cipher Encryption

Ciphertext (CTM)

CBC State m (CBCM)

New CPA attack on CCM



  

Modified Key Block Cipher 
Encryption 

Ciphertext (CTM)

CBC State m (CBCM)

New CPA attack on CCM



[Log,Info,LOOK AT ME. ,I'm the captain now........]
[Log,Info,LOOK AT ME. ,DeviceId: Bulb_A19_v1]
[Log,Info,N_Security,LIB4.5.70]
[Log,Info,N_Security,KeyBitMask,0x0012]
[Log,Info,S_OTA,Bootloader: Upgrade succeeded.]
[Log,Info,ConnectedLamp,errs=0,lastErr=NULL@0]
[Log,Info,ConnectedLamp,Platform version 0.43.0,package_Z_Stack 11155,built by LouvreZLL]
[Log,Info,ConnectedLamp,Product version InfectedLamp-TI 0.0.1, broken by Eyal & Colin   ]
[Log,Info,ConnectedLamp,PowerGlitchCount=0]
[Log,Info,A_Commissioning,Factory New at Ch: 11]
[TH,Ready,0]
[Log,Info,TH,ISTACK free: 82]
[Log,Info,TH,XSTACK free: 664]
[Log,Info,S_ThermalShutdown,Shutdown]
[Log,Info,S_XNv,CompactSector,s=4]
[Log,Info,OSAL,Task took too long: id=10, elapsed=1042848]
[Log,Info,TH,ISTACK free: 76]
[Log,Info,TH,ISTACK free: 75]

Reflashing Even Older TI-Based Bulbs (initial work)





•The bootloader is not part of the update code
•Without it we don’t know the address space, 

interrupts, etc.

• So we write a dumper code
•Dumper code is patched into binary near the 
expected start point 
•Code can’t use stack & have only relative calls

Key are not enough



User Firmware

Interrupts (User Code)

Other Code??

Interrupts (Bootloader)

Bootloader

FW Upgrade File

FW Upgrade File



## 2a6: 80 e1       ldi r24, 0x10 ; 16

## 2a8: 84 b9       out 0x04, r24 ; 4

##    while(1){

##    PORTB = 0x01;

## 2aa: 91 e0       ldi r25, 0x01 ; 1

##    PORTB = 0xFF;

## 2ac: 8f ef ldi r24, 0xFF ; 255

##    DDRB = (1<<4);

##    while(1){

##    PORTB = 0x01;

## 2ae: 95 b9       out 0x05, r25 ; 5

##    PORTB = 0xFF;

## 2b0: 85 b9       out 0x05, r24 ; 5

## 2b2: fd cf rjmp .-6      ; 0x2ae <main+0x40>

patch_togglepins = [0x80, 0xE1, 0x84, 0xB9, 0x91, 0xE0, 0x8F, 0xEF, 

0x95, 0xB9, 0x85, 0xB9, 0xFD, 0xCF]

Test Dumper Image









https://www.youtube.com/watch?v=hi2D2MnwiGM
Or: http://www.oflynn.com
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