
From black to white (box)
attacks on secure systems:

or why do your light bulbs need
a firmware update

Eyal Ronen

What is this talk about

• Example of a hardware attack process

• Focus on what didn’t work and the hard labor
• You can read about the other stuff in the paper

Black to White Using RE

What can we use?

What can we use?

What can we use?

What can we use?

What can we use?

IoT Goes Nuclear:
Creating a ZigBee Chain Reaction

Eyal Ronen, Colin O’Flynn,
Adi Shamir, Achi-Or Weingarten

Typical IoT devices: Philips Hue Smart Lights

Typical IoT devices: Philips Hue Smart Lights

• Mature technology and standards, a relatively simple system

Typical IoT devices: Philips Hue Smart Lights

• Mature technology and standards, a relatively simple system

• A high end product with high end security, but…

Creating a lightbulb worm

• We have proven the possibility of creating a worm
which spreads using only the standard ZigBee wireless
interface

Creating a lightbulb worm

• We have proven the possibility of creating a worm
which spreads using only the standard ZigBee wireless
interface
• Taking over a preinstalled smart light

Creating a lightbulb worm

• We have proven the possibility of creating a worm
which spreads using only the standard ZigBee wireless
interface
• Taking over a preinstalled smart light
• Spreading everywhere

The underlying ZLL protocol

The underlying ZLL protocol

• Each installed light is connected to a central controller using the ZigBee
Light Link (ZLL) wireless protocol in a Personal Area Network (PAN)

Zigbee
Personal
Area
Network

The underlying ZLL protocol

• Each installed light is connected to a central controller using the ZigBee
Light Link (ZLL) wireless protocol in a Personal Area Network (PAN)

• The bridge is connected to a secure home/ office network, and is
controlled by a smartphone app via IP

IP

The underlying ZLL protocol

• Each installed light is connected to a central controller using the ZigBee
Light Link (ZLL) wireless protocol in a Personal Area Network (PAN)

• The bridge is connected to a secure home/ office network, and is
controlled by a smartphone app via IP

• It enables each authorized user to turn each light on or off, to change
the light intensity, and to set its color

• ZigBee Pro

• ZigBee HA

• ZigBee ZLL

• ZigBee OTA Update

• ….

The fun world of standards

class ScanRespPkt(PktParser):

def _reset(self):

PktParser.__init__(self, 'ScanRespPkt', [UINT32('Trans ID'), UINT8('RSSI correction'), UINT8('Zigbee Info'),

UINT8('ZLL info'), UINT16('Key bitmask'), UINT32('Resp ID'),

UINT64('Extended PAN identifier IEEE address'),

UINT8('Network update identifier'),UINT8(' Logical channel'),

UINT16('PAN identifier'), UINT16('Network address'),

UINT8('Number of sub-devices'), UINT8('Total group identifier')])

self._tail = PktParser('', [UINT8('Endpoint identifier'), UINT16('Profile identifier'),

UINT16('Device identifier'), UINT8('Version'), UINT8('Group identifier count')])

def __init__(self):

self._reset()

def unpack(self, raw):

self._reset()

raw = PktParser.unpack(self, raw)

if(self['Number of sub-devices']['val'] == 1):

raw = self._tail.unpack(raw)

self.update(self._tail)

ZLLInterPanState['Cur RespID'] = self['Resp ID']['val']

return raw

def pack(self, list):

self._reset()

PktParser.pack(self, list[0:13])

if(self['Number of sub-devices']['val'] == 1):

self._tail.pack(list[13:])

self.update(self._tail)

ZLLInterPanState['Cur RespID'] = self['Resp ID']['val']

Philps Hue Lamp
Teardown

Boot sequence debug printout

Challenges in taking over a
preinstalled smart light

Challenges in taking over a
preinstalled smart light

• ZigBee Light Link standard uses multiple
cryptographic and security protocols to prevent
misuse

Challenges in taking over a
preinstalled smart light

• ZigBee Light Link standard uses multiple
cryptographic and security protocols to prevent
misuse

• In particular, uses a proximity test to make sure that
the only way to take control of an already installed
Hue lamp is by operating it within 10-20 cm from its
new controller

Protocol Session Outline

Controller Lamp

Scan Request(Transaction ID)

Scan Response

Network Start (Transaction ID)

Reset to Factory New (Transaction ID)

Proximity Test

Protocol Session Outline

Controller Lamp

Scan Request(Transaction ID)

Scan Response

Network Start (Transaction ID)

Reset to Factory New (Transaction ID)

Proximity Test

Protocol Session Outline

Controller Lamp

Scan Request(Transaction ID)

Scan Response

Network Start (Transaction ID)

Reset to Factory New (Transaction ID)

Proximity Test

Protocol Implementation Bug

Protocol Implementation Bug
• We want to cause the light to Reset to Factory New

Protocol Implementation Bug
• We want to cause the light to Reset to Factory New

Protocol Implementation Bug
• We want to cause the light to Reset to Factory New

• Can’t set a valid Transaction ID due to proximity test

Protocol Implementation Bug
• We want to cause the light to Reset to Factory New

• Can’t set a valid Transaction ID due to proximity test

Non-Zero

The case of ZERO (day)

The case of ZERO (day)
• How is the Session data is saved in memory?

The case of ZERO (day)
• How is the Session data is saved in memory?

The case of ZERO (day)
• How is the Session data is saved in memory?

• What is default values in the struct?

The case of ZERO (day)
• How is the Session data is saved in memory?

• What is default values in the struct?
• Well surely it is

checked on access…

The case of ZERO (day)
• How is the Session data is saved in memory?

• What is default values in the struct?
• Well surely it is

checked on access…

The case of ZERO (day)
• How is the Session data is saved in memory?

• What is default values in the struct?
• Well surely it is

checked on access…
• Just on Scan Request

message

Protocol Attack Outline

Controller LampFactory Reset (Transaction ID=0)

We bought a cheap and lightweight
commercial Zigbee evaluation kit:

CarFast.mp4

ZigBee WarFlying -
Taking over a building’s lights

By launching a drone carrying
a fully automated attack
equipment 400 meters away

DroneShorter.mp4

second warflying video here

Spreading everywhere

Getting inside the SoC

Getting inside the SoC
• SoC with Harvard architecture

Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and
relatively good code

Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and
relatively good code

• Lets use the software update

Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and
relatively good code

• Lets use the software update
• No software updates for my lights

Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and
relatively good code

• Lets use the software update
• No software updates for my lights
• Can’t buy the older models

Getting inside the SoC
• SoC with Harvard architecture

• “Open source” stack, but no binaries, and
relatively good code

• Lets use the software update
• No software updates for my lights
• Can’t buy the older models
• Start with the bridge

First try – older TI based model
The one that got away

• Try to connect, it is locked
for debug and read

Looking at EBL source: https://github.com/lee-wei/CC2540/blob/master/Projects/ble/util/EBL/app/sbl_exec.c

static void aesLoadKey(void)
{

// Read the security key from flash 1 byte at a time to thwart an
interrupt & read XDATA attack.

uint8 *keyPtr = (uint8 *)aesKey;

ENCCS = ECB | AES_LOAD_KEY | 0x01;

// 'while ((ENCCS & BV(3)) == 0)' was seen to hang without #pragma optimize=none.
// So proactively adding this wait after every 'ENCCS = ' which empirically seems to work.
ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP; ASM_NOP;

for (uint8 cnt = 0; cnt < KEY_BLENGTH; cnt++)
{
ENCDI = *keyPtr++;

}
}

https://github.com/lee-wei/CC2540/blob/master/Projects/ble/util/EBL/app/sbl_exec.c

Inner bridge software update

Trying to break the read protect

Trying to break the read protect
• The protect bit is saved as the last bit in memory

Trying to break the read protect
• The protect bit is saved as the last bit in memory
• We don’t care about any other bits around it, so

we can corrupt the data around it

Trying to break the read protect
• The protect bit is saved as the last bit in memory
• We don’t care about any other bits around it, so

we can corrupt the data around it
• We assume it is read when entering debug

Trying to break the read protect
• The protect bit is saved as the last bit in memory
• We don’t care about any other bits around it, so

we can corrupt the data around it
• We assume it is read when entering debug

Glitch attack

Glitch attack
• Lets glitch the clock!

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!
• Need to find the sweet spot - Low enough to

corrupt data, high enough to not reset:

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!
• Need to find the sweet spot - Low enough to

corrupt data, high enough to not reset:
• External Capacitors

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!
• Need to find the sweet spot - Low enough to

corrupt data, high enough to not reset:
• External Capacitors
• Internal capacity

Glitch attack
• Lets glitch the clock!
• Probably boot on internal clock 

• Let’s try Voltage glitch!
• Need to find the sweet spot - Low enough to

corrupt data, high enough to not reset:
• External Capacitors
• Internal capacity
• Brownout detector

Glitch attack

Glitch attack
• Use Arduino PWM output – semi success

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug
• Reset

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug
• Reset
• Chip erased

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug
• Reset
• Chip erased
• A new undocumented state

Glitch attack
• Use Arduino PWM output – semi success
• Iterate over offset, frequency and duty cycle
• Results
• Normal debug
• Reset
• Chip erased
• A new undocumented state

• Could try fuzzing, or use better glitching source

Second try - Atmel

Getting software updates

• No software update for Atmel based lamps

Getting software updates

• No software update for Atmel based lamps
• So lets impersonate as an older model and version

Getting software updates

• No software update for Atmel based lamps
• So lets impersonate as an older model and version
• Looked for posting on upgrades on the Internet (mainly Reddit)

Known upgrades (From Internet Posts)

66009663 -> 66013452

65003148 -> 66013452 (recorded with type 100)

66010820 -> 66012457 (recorded with type 104) (GU10)

65003148 -> 66012457 (recorded with type 104) (GU10)

65003148 -> 66013452 (recorded with type 103)

Getting software updates

• No software update for Atmel based lamps
• So lets impersonate as an older model and version
• Looked for posting on upgrades on the Internet (mainly Reddit)

Human to machine translation

• We sniff normal communication, version is encoded differently

Human to machine translation

• We sniff normal communication, version is encoded differently
• Record all version we bought

Human to machine translation

• We sniff normal communication, version is encoded differently
• Record all version we bought

Model number string hex Ar|Ab|Sr|Sb hex Led Image Type in Req

LCT001 66013452 5.23.1.13452

LCT001 66010820 5.8.1.10820 66 0 2a 44

LCT001 66013187 5.23.1.13187 5.23.1.0x3383 66 0 51 131 42 0 33 83 Old Hue 0x0104

LWB004

Lux

66012040 5.17.1.12040 5.17.1.0x2f08 66 0 47 8 42 0 2f 08 0x0105

LWB006

HUE

WHITE

66015095 5.38.1.15095 5.38.1.0x3AF7 66 0 58 247 42 0 3A F7

LCT001 66009663 5.8.1.9663

Or 5.23.1.9663

.0x25bf 42 0 25 bf

LCT001 65003148 41 0 0c 4c

HML004 66014169

LCT007 66014919 5.38.1.14919 5.38.1.0x3A47 66 0 58 71 42 0 3A 47 New Controller 2NG

Human to machine translation

• We sniff normal communication, version is encoded differently
• Record all version we bought

• 66012040 – 66 0 12040 – 0x42 0x00 0x2f08 – 0x42 0x00 0x2f 0x08

Model number string hex Ar|Ab|Sr|Sb hex Led Image Type in Req

LCT001 66013452 5.23.1.13452

LCT001 66010820 5.8.1.10820 66 0 2a 44

LCT001 66013187 5.23.1.13187 5.23.1.0x3383 66 0 51 131 42 0 33 83 Old Hue 0x0104

LWB004

Lux

66012040 5.17.1.12040 5.17.1.0x2f08 66 0 47 8 42 0 2f 08 0x0105

LWB006

HUE

WHITE

66015095 5.38.1.15095 5.38.1.0x3AF7 66 0 58 247 42 0 3A F7

LCT001 66009663 5.8.1.9663

Or 5.23.1.9663

.0x25bf 42 0 25 bf

LCT001 65003148 41 0 0c 4c

HML004 66014169

LCT007 66014919 5.38.1.14919 5.38.1.0x3A47 66 0 58 71 42 0 3A 47 New Controller 2NG

Light impersonating

• Write impersonating code, to identify as old models

Light impersonating

• Write impersonating code, to identify as old models
• Sniff OTA updates on Zigbee and on bridge

Light impersonating

• Write impersonating code, to identify as old models
• Sniff OTA updates on Zigbee and on bridge

Light impersonating

• Write impersonating code, to identify as old models
• Sniff OTA updates on Zigbee and on bridge

• They are encrypted

Start OTA attack

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix
• Failed on file Size – fix

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix
• Failed on file Size – fix

• Start OTA – get invalid version msg after first block

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix
• Failed on file Size – fix

• Start OTA – get invalid version msg after first block
• Change block size to one

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix
• Failed on file Size – fix

• Start OTA – get invalid version msg after first block
• Change block size to one
• Failed after 56 bytes – Zigbee OTA header size

Start OTA attack

• Try to load old firmware to new bulb using OTA
protocol
• Failed on file Type – fix
• Failed on file Size – fix

• Start OTA – get invalid version msg after first block
• Change block size to one
• Failed after 56 bytes – Zigbee OTA header size
• Fix type and size in header – OTA started and failed

Start the
OTA
process

Start the
OTA
process

Read
Philips
File
Header

Start the
OTA
process

Read
Philips
File
Header

Cleanup
After
Failure

Downloaded firmwares
GU10= '2A00010000665214100217303903EF402E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

Connected= '2A00010000665214100217303903EF402E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

ConnectedFixed= '2A0001040066521410021730390002002E370B25ECC04765CBE11E0E74F7A114EE6B58B52FF30D83681267714C7A75204

LivingColors= '2A00010300696114110316380703E88011B6996E648CE50CF315CBC2A810C5D26301FD1E5E1E201005823C9AEFAC7185

fw01016441STM='2A00010201F43E1408281633310618809DB509B3F6E9326D6F8FD2089ECB375D47A6654262B77352C33AAAFD2DB492200541793

fw01018228STM='2A00010201F42614101511592405EFC0EC546C95824A01524E08D5B3D8CCDAA293C7BC8ECC28087059D6D621CFD80178

fw01024156STM='2A00010201F4D5150404131056060840A84D129BFF0172734E64CD06CC0D0D37507B920B5B7FF6957584CD077111BDE

fw01029624STM='2A00010201F44D15111722204406A3402EECED20A08438712C2BEF1C815DC534819CB82B3067AAA555E575DF9203B3DE

fw01029624='2A00010100668C151117222038037E8013CE617BE6A3732061E15FDEDC6B0BBF5F165BF1238F173894AF1AFE3DB8A02740

fw01024156='2A0001010066A5150404131053036EC025C053D8B1D93161F218DDE77DF30570EA03C753D16EA8A7DEA13F7F82370F78EAC

fw01030262='2A0001010066CB151216151233037E802D4A27D63C496DB253809EB7CC57E195A31A1A8054E1012883DA24B57E4BAD45379052

fw01018228='2A0001010066F5141015115920036BC0290FE89BA8EE70D3C0AF5324306D168C8BA71810EFFD738723B41E12B252C2A2D6

fw01016441='2A0001010066FD140828163329036BC00A2CDADABFD5C4DBCBE11EBE0066012F4667D2327D2915DE9F8525599793F2065D

fw01016441STM='2A00010201F43E1408281633310618809DB509B3F6E9326D6F8FD2089ECB375D47A6654262B77352C33AAAFD2DB492200541793

fw01016441='2A0001010066FD140828163329036BC00A2CDADABFD5C4DBCBE11EBE0066012F4667D2327D2915DE9F8525599793F2065D

fw01018228STM='2A00010201F42614101511592405EFC0EC546C95824A01524E08D5B3D8CCDAA293C7BC8ECC28087059D6D621CFD80178

fw01018228='2A0001010066F5141015115920036BC0290FE89BA8EE70D3C0AF5324306D168C8BA71810EFFD738723B41E12B252C2A2D6

fw01024156STM='2A00010201F4D5150404131056060840A84D129BFF0172734E64CD06CC0D0D37507B920B5B7FF6957584CD077111BDE

fw01024156='2A0001010066A5150404131053036EC025C053D8B1D93161F218DDE77DF30570EA03C753D16EA8A7DEA13F7F82370F78EAC

fw01029624STM='2A00010201F44D15111722204406A3402EECED20A08438712C2BEF1C815DC534819CB82B3067AAA555E575DF9203B3DE

fw01029624='2A00010100668C151117222038037E8013CE617BE6A3732061E15FDEDC6B0BBF5F165BF1238F173894AF1AFE3DB8A02740

fw01030262='2A0001010066CB151216151233037E802D4A27D63C496DB253809EB7CC57E195A31A1A8054E1012883DA24B57E4BAD45379052

GU10= '2A00 0100 00 6652 141002 173039 03EF40

LivingColors= '2A00 0103 00 6961 141103 163807 03E880

fw01016441STM= '2A00 0102 01 F43E 140828 163331 061880

fw01018228STM= '2A00 0102 01 F426 141015 115924 05EFC0

fw01024156STM= '2A00 0102 01 F4D5 150404 131056 060840

Correlation power analysis

Power Analysis Example Setup

CPA for RE

Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

Plaintext (PTM)

CBC State m (CBCM)

Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM

Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

Plaintext (PTM)

CBC State m (CBCM)

Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM
Jaffe 07
Requires 2^16 blocks

Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

Plaintext (PTM)

CBC State m (CBCM)

Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM
O’Flynn & Chen
Chosen Nonce

Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

Plaintext (PTM)

CBC State m (CBCM)

Block Cipher Encryption

Ciphertext (CTM+1)

Nonce (unknown) Counter (m+1)

Block Cipher Encryption

Plaintext (PTM+1)

CBC State m (CBCM+1)

New CPA attack on CCM

ECB - modified key

Block Cipher Encryption

Ciphertext (CTM)

Nonce (unknown) Counter (m)

CBC State m -1 (CBCM-1)

Block Cipher Encryption

CBC State m (CBCM)

New CPA attack on CCM

Block m Const

Block Cipher Encryption

Ciphertext (CTM)

CBC State m (CBCM)

New CPA attack on CCM

Modified Key Block Cipher
Encryption

Ciphertext (CTM)

CBC State m (CBCM)

New CPA attack on CCM

[Log,Info,LOOK AT ME. ,I'm the captain now........]
[Log,Info,LOOK AT ME. ,DeviceId: Bulb_A19_v1]
[Log,Info,N_Security,LIB4.5.70]
[Log,Info,N_Security,KeyBitMask,0x0012]
[Log,Info,S_OTA,Bootloader: Upgrade succeeded.]
[Log,Info,ConnectedLamp,errs=0,lastErr=NULL@0]
[Log,Info,ConnectedLamp,Platform version 0.43.0,package_Z_Stack 11155,built by LouvreZLL]
[Log,Info,ConnectedLamp,Product version InfectedLamp-TI 0.0.1, broken by Eyal & Colin]
[Log,Info,ConnectedLamp,PowerGlitchCount=0]
[Log,Info,A_Commissioning,Factory New at Ch: 11]
[TH,Ready,0]
[Log,Info,TH,ISTACK free: 82]
[Log,Info,TH,XSTACK free: 664]
[Log,Info,S_ThermalShutdown,Shutdown]
[Log,Info,S_XNv,CompactSector,s=4]
[Log,Info,OSAL,Task took too long: id=10, elapsed=1042848]
[Log,Info,TH,ISTACK free: 76]
[Log,Info,TH,ISTACK free: 75]

Reflashing Even Older TI-Based Bulbs (initial work)

•The bootloader is not part of the update code
•Without it we don’t know the address space,

interrupts, etc.

• So we write a dumper code
•Dumper code is patched into binary near the
expected start point
•Code can’t use stack & have only relative calls

Key are not enough

User Firmware

Interrupts (User Code)

Other Code??

Interrupts (Bootloader)

Bootloader

FW Upgrade File

FW Upgrade File

2a6: 80 e1 ldi r24, 0x10 ; 16

2a8: 84 b9 out 0x04, r24 ; 4

while(1){

PORTB = 0x01;

2aa: 91 e0 ldi r25, 0x01 ; 1

PORTB = 0xFF;

2ac: 8f ef ldi r24, 0xFF ; 255

DDRB = (1<<4);

while(1){

PORTB = 0x01;

2ae: 95 b9 out 0x05, r25 ; 5

PORTB = 0xFF;

2b0: 85 b9 out 0x05, r24 ; 5

2b2: fd cf rjmp .-6 ; 0x2ae <main+0x40>

patch_togglepins = [0x80, 0xE1, 0x84, 0xB9, 0x91, 0xE0, 0x8F, 0xEF,

0x95, 0xB9, 0x85, 0xB9, 0xFD, 0xCF]

Test Dumper Image

https://www.youtube.com/watch?v=hi2D2MnwiGM
Or: http://www.oflynn.com

Want to know more?

Want to know more?
• The paper and videos are at

Want to know more?
• The paper and videos are at

iotworm.eyalro.net

Want to know more?
• The paper and videos are at

iotworm.eyalro.net
• A great source for tutorials on hardware attacks

Want to know more?
• The paper and videos are at

iotworm.eyalro.net
• A great source for tutorials on hardware attacks

wiki.newae.com

Want to know more?
• The paper and videos are at

iotworm.eyalro.net
• A great source for tutorials on hardware attacks

wiki.newae.com

