
APPLICATION-ORIENTED SECURITY:
SECRETS MANAGEMENT AND SIDE-

CHANNEL PROTECTION FOR TEES
Christof Fetzer

TU Dresden

OUTLINE

Enclave / TEEApplication
Code

1.

2.

Secrets

3.

Side-Channels

�2

OBJECTIVES

�3

APPLICATION-ORIENTED SECURITY

Application

Objective: Ensure integrity and confidentiality of applications

Data Computation Communication

attacker

client

https://sconedocs.github.io �4

THREAT MODEL

Application attacker

system administrator

(root, hardware access)

client

https://sconedocs.github.io �5

SYSTEM ADMINISTRATOR

Application attacker

system administrator

(root, hardware access)

client

https://sconedocs.github.io

attacker

credentials
social engineering

IaaS

manages

�6

SERVICE PROVIDER ADMINISTRATOR

Application attacker

system administrator

(root, hardware access)

client

https://sconedocs.github.io

IaaS

attacker

FaaS

FaaS administrator

(root, application rights)

manages

�7

DEFENSE IN DEPTH!

Application attacker

client

https://sconedocs.github.io

IaaS

attacker

FaaS

�8

OS-BASED ACCESS CONTROL INSUFFICIENT

Application

service provider administrator

(root, application rights)

client secret

dump  
memory

attacker

system administrator

(root, hardware access)

https://sconedocs.github.io �9

WE NEED A CRYPTOGRAPHIC APPROACH!

Application

service provider administrator

(root, application rights)

client
crypto

TLS
attacker

system administrator

(root, hardware access)

https://sconedocs.github.io �10

ENGINEERING IS ABOUT …
➤ … balancing multiple, often conflicting goals

�11

availability, durability

security
usability

cost  
(engineering, operations, …)

time to market

portability

… security is for many service providers not the most important issue

SCONE: E2E ENCRYPTION WITHOUT SOURCE CODE CHANGES

Application
- protected by

SCONE -

service provider administrator

(root, application rights)

client
crypto

TLS
attacker

[SCONE] Sergei Arnautov, et al, „SCONE: Secure Linux Containers with Intel SGX“,  
 USENIX OSDI 2016

system administrator

(root, hardware access)

Languages:	C,	C++,	Go,	Rust,	Java,	Python,	R,	…

�12

WHY NO SOURCE CODE CHANGES?
➤ Considerations:

➤ reduce cost / time of improving security

➤ reduce the skills required to improve security

➤ no hardware / software lock-in

➤ ..

�13

➤ partitioning software for TEEs is quite difficult

TOOL SUPPORT
Joshua Lind, etc: „Glamdring: Automatic
Application Partitioning for Intel SGX“,

Usenix ATC 2017

�14

…still hard to partition - should we really partition?

EXAMPLE
➤ Web Server (nginx)

➤ Configuration:

➤ TLS certificate (private key)

➤ config file

➤ …

➤ WWW files:

➤ must only be visible to
authorised clients

web server
(nginx)

TLS

cert wwwfiles

process

https://sconedocs.github.io �15

THREAT MODEL?
➤ Attacker has root access

➤ controls OS

➤ controls Hypervisor

➤ Attacker can

➤ read/modify all files

➤ can read/modify memory of
processes

➤ can see all network traffic

web server
(nginx)

TLS

cert www

OS

dump  
memory

(root)

node

hypervisor
https://sconedocs.github.io

�16

HOW TO PARTITION NGINX?
➤ We need to protect certificate!

➤ must not leak private key

➤ TLS should be protected!nginx
TLS

cert www

T
L
S

could impersonate original  
website if not protected �17

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ Attacker does not need cert:

➤ establish connections via
protected TLS stack

➤ how to protect against this?

➤ how to automate the
protection?

nginx
TLS

cert www

T
L
S

https://sconedocs.github.io �18

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ We need to encrypt www files

➤ to ensure confidentiality

➤ to ensure integrity

nginx
TLS

cert www

T
L
S

read/  
modify

https://sconedocs.github.io �19

SHOULD WE PARTITION NGINX?

➤ We need to protect certificate!

➤ must not leak

➤ TLS should be protected!

➤ We need to encrypt www files

➤ to ensure confidentiality

➤ to ensure integrity

➤ We need to protect content

➤ never as plain text

➤ detect modifications

nginx
TLS

cert www

T
L
S

? Side-Channel attack!
�20https://sconedocs.github.io

SHIELDING
➤ Partitioning requires bespoke

protection

➤ need to ensure that TLS API
calls are not malicious

➤ Protecting the OS Interface

➤ larger than TLS API

➤ but reusable across many
applications

TLS T
L
S

TLS
nginx

OS Interface

shielding

attacks

https://sconedocs.github.io

FILESHIELD, TLS SHIELD,…
➤ Transparent encryption/

decryption of files

➤ inside of enclaves

➤ In case app does not
support TLS

➤ can wrap TCP
connections in TLS

➤ e.g., memcache

TLS
nginx

transparently encrypted files

shielding

attacks

cert www

https://sconedocs.github.io

SCONE: FILE ENCRYPTION

➤ Developer determines which files must be encrypted

➤ Encryption/authentication with source code changes

root
root

no	 
modifications

�23https://sconedocs.github.io

REALLY, NO
PARTITIONING?

- focus on microservices -

�24

CLOUD NATIVE APPLICATIONS

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

trusted

cloud-native application

cloud services

integrity  
& confidentiality (micro-)services deployed in containers

availability

https://sconedocs.github.io �25

EACH MICROSERVICE RUNS IN A CONTAINER

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

cloud-native application

availability

standard containers (untrusted)

µ-service … µ-service

cloud services

e.g., no protection needed for  
services accessing encrypted data only

https://sconedocs.github.io �26

MICROSERVICE-BASED PARTITIONING

µ-service

SGX enclave

secure containers (trusted)

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

cloud-native application

untrusted

availability

cloud services

https://sconedocs.github.io �27

CONTAINER-AS-A-SERVICE AND/OR IAAS

Operating system

µ-service

SGX enclave

secure containers (trusted)

Virtual Machine

Operating system

Virtual Machine

Operating system

Virtual Machine

…

…
IaaS

FaaS
Container Engine Container Engine Container Engine…

Container Swarm

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

untrusted

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

cloud-based applicationintegrity  
& confidentiality

https://sconedocs.github.io

CaaS

�28

METAL-AS-A-SERVICE

Operating system

µ-service

SGX enclave

secure containers (trusted)

host

Operating system

host

Operating system

host

…

…
MaaS

Container Engine Container Engine Container Engine…

Container Swarm

untrusted

cl
ou

d
pr

ov
id

er
se

rv
ic

e
pr

ov
id

er

untrusted

standard containers (untrusted)

… µ-service

SGX enclave

µ-service … µ-service

cloud-based applicationintegrity  
& confidentiality

https://sconedocs.github.io

FaaS

CaaS

�29

PORTABILITY
- reduce cost / avoid lock in -

SCONE PLATFORM: DESIGNED FOR MULTIPLE ARCHITECTURES

portable
code

Intel AMD arm

SGX main memory  
encryption

???

SCONE:

no source code changesSCONE:

gcc-based crosscompiler

SCONE cro
ssc

ompiler

Portability through cross-compilation

https://sconedocs.github.io

Languages:	C,	C++,	Go,	Rust,			interpreted/JIT:	Java,	Python,	R,	…

�31

MEMORY SAFETY?
- exploiting application bugs -

SGXBOUNDS FOR MEMORY SAFETY (C AND C++)

SGXBounds
(LLVM pass)

Operating System

Shielded app
(e.g., SCONE)Source code

 CPU RAM
 SGX

Advanced features:
 ➥ Tolerating errors with boundless memory
 ➥ Metadata management support
 ➥ Compile-time optimizations

See paper for details

Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. 2017. SGXBOUNDS: Memory Safety for Shielded Execution. In Proceedings of the Twelfth
European Conference on Computer Systems (EuroSys '17). ACM, New York, NY, USA, 205-221.

SGXBOUNDS IN A NUTSHELL

PERFORMANCE

ASan MPX SGXBounds

Phoenix 1.41 2.27 1.13
PARSEC 1.60 1.43* 1.20

SPEC 1.76 1.52* 1.41

SECRETS MANAGEMENT

Enclave / TEEApplication
Code

Secrets

Side-Channels

�36

DISTRIBUTED
APPLICATIONS

- motivation -

�37

DISTRIBUTED APPLICATIONS - SPREAD ACROSS CLOUDS

App

service provider administrator

(root, application rights)

client
TLS

attacker

App

App

ba
ck

en
d

edge service
backend cloud

regional cloud

system administrator

(root, hardware access)

https://sconedocs.github.io �38

HOW DO WE KNOW THAT CORRECT CODE EXECUTES?

App

service provider administrator

(root, application rights)

client
TLS

attacker

App

App

ba
ck

en
d

controls

We need to attest that the

correct code is running!

system administrator

(root, hardware access)

https://sconedocs.github.io �39

TRANSPARENT ATTESTATION
& CONFIGURATION

- problems? -

�40

PROBLEM: STARTUP LATENCY!
➤ Attestation via Intel Attention Service

➤ rate in which we can spawn containers limited/depends on
Intel

�41

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●
●
●

0.001

0.010

0.100

1.000

10 100 1000
Throughput (#starts/s)

La
te

nc
y

(s
)

●

●

●

●

IAS

CAS

SGX w/o

Native

https://sconedocs.github.io

TRANSPARENT ATTESTATION

CAS
(Configuration &

Attestation Service)
Service

Enclave

Enclave

LAS

Enclave

host

4) Quote

2) Public-key 3) Quote

1) KeyPair

5) Configuration

Policy

same cluster �42https://sconedocs.github.io

TRANSPARENT ATTESTATION

CAS
(Configuration &

Attestation Service)
Service

Enclave

Enclave

LAS

Enclave

host

4) Quote

2) Public-key 3) Quote

1) KeyPair

5) Configuration

Policy

same cluster �43

attested once
with IAS

attested once
with parent CAS

https://sconedocs.github.io

PROBLEM: STARTUP LATENCY!
➤ Attestation via Intel takes too long time

➤ rate in which we can spawn containers limited/depends on
Intel

�44

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●
●
●

0.001

0.010

0.100

1.000

10 100 1000
Throughput (#starts/s)

La
te

nc
y

(s
)

●

●

●

●

IAS

CAS

SGX w/o

Native

https://sconedocs.github.io

NO SOURCE CODE CHANGES?

➤ Problem: how can the application show that it runs inside an
enclave and runs correct code?

➤ Approach: attest application and give it a certificate

�45https://sconedocs.github.io

REST INTERFACES
➤ Application is partitioned into

microservices

➤Microservices run on same or
on different machines

➤REST APIs protected by TLS

➤could add transparently if
needed („SCONE TLS shield“)

�46https://sconedocs.github.io

TRANSPARENT P2P ATTESTATION VIA TLS

We run our internal CA and only components belonging to the same
application can talk to each other …

Certificate	Authority	
(integrated	in	SCONE	CAS)

https://sconedocs.github.io �47

SECRETS MANAGEMENT

Enclave / TEEApplication
Code

1.

2.

Secrets

3.

Side-Channels

�48

SIDE CHANNELS
- dealing various side channels -

SIDE CHANNEL ATTACK?

➤ An attacker steals a secret from a victim via a covert
channel:

➤ i.e., a channel that is not intended to communicate
information

➤ Examples: timing, power, cache, …

secret

victim

secret

attacker
covert channel

�50

SIDE CHANNEL ATTACK?

➤ Side channel attack:

➤ information gained from the implementation

➤ not from the implemented algorithm

secret

victim

secret

attacker
covert channel

implementation

�51

SIDE CHANNEL ATTACK

➤ We need a

➤ transmitter code in the victim to send the secret, and a

➤ receiver to store the secret

secret transmitter
code

victim

receiver secret

attacker
covert channel

�52

SIDE CHANNEL ATTACK

➤ Finally, we need

➤ access code to get the secret to the transmitter code

secret access
code

transmitter
code

victim

receiver secret

attacker
covert channel

�53

WHAT SIDE-CHANNELS?
➤ Spectre Variant 1

➤ Spectre Variant 2

➤ Meltdown

➤ Spectre NG

➤ Foreshadow

➤ …

➤ Let’s focus on Spectre Variant 1

�54

NON-SPECULATIVE EXECUTION

if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

uncached

Note: execution must wait until array1_size is fetched from memory

Paul Kocher et al, „Spectre Attacks: Exploiting Speculative Execution“, 40th IEEE
Symposium on Security and Privacy (S&P’19)

�55

SPECULATIVE EXECUTION

if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

predict

Approach: CPU predicts the outcome of the comparisons

Paul Kocher et al, „Spectre Attacks: Exploiting Speculative Execution“, 40th IEEE
Symposium on Security and Privacy (S&P’19)

�56

EXPLOITING CONDITIONAL BRANCH MISPREDICTION

➤ Branch prediction to speed up computations:

if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

�57

MISPREDICTION
➤ CPU might (mis)predict true:

➤ accesses array1 out-of-bound

➤ will speculatively access

➤ array2[secret value*4k]

➤ CPU will eventually detect this

➤ rolls back updates

if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

secret valueaddr

array1

x = addr-array1

controls

in cache

uncached

�58

LEARNING THE SECRET…
if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

secret valueaddr

array1

x = addr-array1

controls

uncached

array2

*4096
shared cache

➤ Value array2[secret value*4096] is read into cache

�59

LEARNING THE SECRET…
if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

secret valueaddr

array1

x = addr-array1

uncached

array2

*4096
shared cache

➤ Value array2[secret value*4096] is read into cache

probes cache to detect

which index was accessed

ACCESS CODE

�60

DECOMPOSING SPECTRE 1
if	(x	<	array1_size)	
y	=	array2[array1[x]	*	4096];

secret valueaddr

array1

x = addr-array1

array2

*4096
shared cache

➤ Value array2[secret value*4096] is read into cache

probes cache to detect

which index was accessed

Access Code

Cache

(covert channel)

ReceiverTransmitter Code

secret access
code

transmitter
code receiver secret

covert channel

�61

ADDRESSING SIDE CHANNEL ATTACKS?

➤ Alternatives:

➤ disable access code

➤ disable transmitter code

➤ disable covert channel

➤ disable receiver code

secret access
code

transmitter
code

victim

receiver secret

attacker
covert channel

�62

Varys
Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko, Bohdan Trach
Robert Krahn, Andre Martin, Christof Fetzer

Mark Silberstein

�63

Existing solutions

Low overhead Low effort
(no code changes required)

Cloak
[1]

Düppel
[2]

[1] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., & Costa, M. Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In Usenix Security 2017.
[2] Zhang, Y., Reiter, M. K., Zhang, Y., & Reiter, M. K. Düppel: Retrofitting Commodity Operating Systems to Mitigate Cache Side Channels in the Cloud. In CCS 2013.
[3] Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Müller, U., & Sadeghi, A.-R. DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization. In arXiv

2017.
[4] Chen, S., Reiter, M. K., Zhang, X., & Zhang, Y. Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu. In ASIA CCS ’17.
[5] Shih, M., Lee, S., & Kim, T. T-SGX: Eradicating controlled-channel attacks against enclave programs. In NDSS 2017.

Dr.SGX
[3]

Déjà Vu
[4]

T-SGX
[5]

�64

Existing solutions

Low overhead Low effort
(no code changes required)

Varys
● 15% average slowdown
● No code changes

Düppel
[2]

Dr.SGX
[3]

Déjà Vu
[4]

T-SGX
[5]

Cloak
[1]

�65

Approach

Rely but verify

�66

Approach

Rely but verify

Request isolation
from the untrusted

OS
�67

Approach

Rely but verify

Request isolation
from the untrusted

OS

Check within
the enclave

�68

Complete description

�69

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Let’s explains this
sentence

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

�70

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

�71

WHAT SIDE CHANNELS DO WE CONSIDER?

core core core core… …

processor processor

platform

HT HT

HT = hyperthread

HT HT HT HT HT HT

�72

L1 & L2 CACHE: SHARED BETWEEN HYPERTHREADS

shared L1 cache

Hyperthread Hyperthread

core

L2 cache (skylake):
- size = 256KB
- 64 bytes/cacheline
- 12 cycles latency

shared L2 cache

�73

L1 cache:
- instruction cache, data cache
- 32 KB data cache
- 32 KB instruction cache
- 4 cycles

(skylake)

Vulnerable shared resources

● CPU caches (L1, L2)
● Page tables
● FPU
● Memory bus
● ...

Varys

�74

Side-channel attacks

Enclaved
process

�75

Enclaved
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

�76

Side-channel attacks

Enclaved
process

Shared resource

addr1

addr2

�77

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

Cleanup

�78

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

Running...

�79

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

Running...

�80

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

Running...

�81

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

�82

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

addr1 was
accessed!

�83

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

addr2 was not
accessed!

�84

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

This line was
executed

�85

Side-channel attacks

if (secret == 0)
 read(addr1)
else
 read(addr2)

Enclaved
process

Shared resource

addr1

addr2

The secret is 0

�86

Side-channel attacks

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks by
creating an isolated environment and verifying it
at runtime.

�87

Attack requirements

● High interrupt rate
● Predefined cache state
● Shared core

�88

Attack requirements

● High interrupt rate
● Predefined cache state
● Shared core

Isolated
environment

�89

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks by
creating an isolated environment and verifying it
at runtime.

�90

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

�91

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

�92

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.

�93

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.
● Normal exit rate: ~ 30 exits/s.

�94

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.
● Normal exit rate: ~ 30 exits/s.

�95

Asynchronous Enclave Exit (AEX)

Enclaved
process

Memory

SGX Enclave

SGX

RIP = 0x123
RAX = 0x111
RBX = 0x222

.

.

.

CPU state

�96

Asynchronous Enclave Exit (AEX)

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

�97

Asynchronous Enclave Exit (AEX)

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

�98

Asynchronous Enclave Exit (AEX)

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

SSA

RIP = 0x100
RAX = 0x000
RBX = 0x000

�99

SSA = State Save Area

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

�100

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

�101

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Read
SSA

�102

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Still
0x000
Continue.
.

�103

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

�104

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222 RIP = 0x123

RAX = 0x111
RBX = 0x222

Read
SSA

�105

Detecting interrupts

Enclaved
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222 RIP = 0x123

RAX = 0x111
RBX = 0x222

Not 0x000
There was an
interrupt!

�106

Detecting interrupts

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

�107

Hiding cache traces

Enclaved
process

Cache

addr1

addr2

�108

addr1

addr2

Enclaved
process

Cleanup

Hiding cache traces

Cache

�109

addr1

addr2

Enclaved
process

There was an
interrupt!

Hiding cache traces

Cache

�110

addr1

addr2

Enclaved
process

Hiding cache traces

Cache

�111

addr1

addr2

Enclaved
process

Hiding cache traces

Cache

�112

addr1

addr2

Enclaved
process

Hiding cache traces

Cache

�113

addr1

addr2

Enclaved
process

Hiding cache traces

Access
addr1

Cache

�114

addr1

addr2

Enclaved
process

Hiding cache traces

???
Cache

�115

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

�116

Preventing core sharing

● Occupy both hyperthreads

Core 1

Process Attacker

�117

Preventing core sharing

● Occupy both hyperthreads
○ Use process affinity

Core 1

Process Process

�118

How do we ensure reservation?

Core 1

Process Process

Core 2

�119

How do we ensure reservation?

Core 1

Process

Core 2

Attacker Process

�120

Handshake

● Use shared access timing

L1/L2
LLC

Core 2

Fast
Slow

Process Process

�121

Core 1

Handshake

● Use shared access timing

L1/L2
LLC

Core 1 Core 2

Fast
Slow

Process Process

Write to
0x123

�122

Handshake

● Use shared access timing

L1/
L2

LLC

Core 1 Core 2

Fast
Slow

Process Process
Read from
to 0x123

�123

Handshake

● Use shared access timing

L1/
L2

LLC

Core 1 Core 2

Fast
Slow

Process Process
It was
fast!

�124

Handshake

● Use shared access timing

L1/
L2

LLC

Core 1 Core 2

Fast
Slow

Process Attacker Process

�125

Handshake

● Use shared access timing

L1/
L2

LLC

Core 1 Core 2

Fast
Slow

Process Attacker Process

Read from
to 0x123

�126

Handshake

● Use shared access timing

L1/
L2

LLC

Core 1 Core 2

Fast
Slow

Process Attacker Process

It was slow!
Something is
wrong...

�127

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

�128

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

�129

Implementation

Source
code

LLVM pass
(Exit detection)

Compiler
(SCONE)

Hardened
binary

Runtime library
(Handshake &
cache eviction)

�130

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

�131

Evaluation: performance

Lower
is

better

�132

Evaluation: performance

Lower
is

better

�133

Lower
is

better

�134

Evaluation: performance

Lower
is

better

�135

Evaluation: performance

Lower
is

better

�136

Evaluation: performance

Handshake and eviction only at enclave exits
● 20-30 times per second

Lower
is

better

�137

Evaluation: performance

Evaluation: multithreading

�138

Evaluation: multithreading

Lower
is

better

�139

EPC paging ⇒ higher exit rate

Lower
is

better

�140

Evaluation: multithreading

EPC paging ⇒ higher exit rate

Lower
is

better

False
positives

�141

Evaluation: multithreading

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

�142

Evaluation: security

● Privileged cache SCA
○ Target: L1 cache

● No eviction

�143

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● No eviction

�144

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● No eviction

�145

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● Varys protection

�146

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● Varys protection

�147

Varys Summary

● Varys: side-channel protection for SGX enclaves
● "Rely but verify" approach
○ Ask OS for

■ Lower interrupt rate
■ Paired thread allocation

○ Verify the request
● Loads cache on enclave entrance

�148

