INFORMATION SECURITY CENTER

Security Issues on
Intel SGX

(offensive and defensive techniques)

Taesoo Kim

&Georgiaﬂtm@iﬁ@]ﬁ@
o Tlechnholog)y

—

The Team

N
(7, 22r .
B Microsoft
Oregonstate MM Research
University

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors

* Summary

Outline

* Threat model / assumption

* Traditional attack vectors
e Cache-based side channel

* Memory safety
* Weak mitigation techniques (e.g., ASLR)
*° Uninitialized padding in EDL

* New attack vectors
* Summary

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors
* Page table attack

* Branch shadowing attack
* * Rowhammer against SGX

* Summary

Disclaimer

https://software.intel.com/en-us/sgx/academic-research

intel' Developer Zone

Development) Tools) Resources »

Intel® Software Guard Extensions
(Intel® SGX)

An Intel® architecture extension designed to increase the security of
application code and data.

Academic Research

Run Unmodified Applications in Enclaves

e Graphene SGX: A Practical Library Operating System for Unmodified Applications
e SGXKernel: A Library Operating System Optimized for Intel SGX

Revisited: Intel SGX 101

* “Practical” TEE implementation by Intel

e Extending x86 Instruction Set Architecture (ISA)
— Native performance
— Compatible to x86
— Commodity (i.e., cheap)

= - Bl ||
&1 ey
M m- m mu&uﬂx Super X11SSH-F

Lenovo T560 Dell OptiPlex 5040 Supermicro Server

Revisited: SGX for Cloud

Skylake CPU

Application (untrusted)

Operating System (untrusted)

Cloud provider (untrusted)

Revisited: SGX for Cloud

Application (untrusted)

Skylake CPU |Operating System (untrusted)

s -~ Cloud provider (untrusted)

Revisited: SGX for Cloud (Isolation)

Skylake CPU

Enclave

Data

e)
! Code

Application (untrusted)

o

Operating System (untrusted) w

o

Cloud provider (untrusted)

10

Revisited: SGX for Cloud

(Remote attestation)
EPID

by de\;eloper

Application (untrusted)

Operating System (untrusted)

- Cloud provider (untrusted)

_

Client

Revisited: SGX for Cloud
(Remote attestation)

EPID
<intei5 by developer

Application (untrusted)

Operating System (untrusted) 0

Cloud provider (untrusted)

(intel')
Skylake

Client w

12

SGX Ecosystem for Attackers

Q . Trusted components (i.e., where we should attack)

Q . Attacker’s capabilities (i.e., what attackers can do)

EPID
(inteis by developer

o Data -
Code
Enclave

Application (untrusted) Q

Operating System (untrusted) w

Cloud provider (untrusted)

<o 13

Our Initial Interests as Attacker

Attacking applications running on enclaves
(i.e., breaking their isolation and confidentiality)
with the capabilities of the cloud provider

Not interesting
(unknown, not popular)

EPID

ﬁ, IAplecatlon (untrusted)
| @P

Operating System (untrusted) Q

)

Cloud provider (untrusted

Not interesting
(non technical issues)

14

Summary: Intel SGX 101

* Two important design goals:
e Performance (i.e., native speed, multithread)
e General purpose (i.e., x86 ISA)

* Two important security primitives:

* |solated execution - confidentiality, integrity

* Remote attestation - integrity

15

Intel SGX 101: Isolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

Physical Address
Memory Space

CPU Package
Processor Key EPC

o

Encrypted

code/data -

Memory Encryption
Engine (MEE) .

Intel SGX 101: Isolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

Physical Address
Memory Space Access from
OS/VMM

CPU Package
Processor Key

. |Encrypted --.._
%\%pmg code/data

Memory Encryption
Engine (MEE)

EPC

Access b/w
enclaves

17

SGX’s Threat Model (very strong!)

. All except the core package can be malicious
. Device, firmware, ...
. Operating systems, hypervisor ...

. DoS (availability) is naturally out of concern

. Intel excludes cache-based side-channel
(due to performance)

What if Enclave is Compromised?

* SGX protects attackers from auditing/analysis
* Leak sensitive information
* Permanently parasite to the enclave program

Protected?
by SGX Leak secret Rootkit

No access

from
OS/VMM

What if Enclave is Compromised?

* SGX protects attackers from auditing/analysis

Due to its strong threat model and consequences of
compromises, developing a secure enclave program is

more difficult than a typical program!

No access

from
OS/VMM

20

Potential Post Exploitation

* Dumping confidential data
* i.e., memcpy(non-enclave region, enclave, size)

* Permanent parasite
* i.e., MiTM on the remote attestation

Hacking in Darkness: Return-oriented Programming against Secure
Enclaves

Jaetivuk Leet Jinsoo Jansg' Yeongjin Jang™ Nohvun Kwak™ Yesewl Choi' Chanshoe Choi™
Taesoo Kin™ Marcus Peinado” Brent Bvunghoon Kang™

“KAIST “Georgia Institute of Technology tMicrosoft Research

Abstract

The consequences of Dk ROP e slarmmng; the ol
Lseher can completely breach the enclave's memory peo
Intel Soltware Guanl Extensicns (SCGX1 s o bandwarne L

ons amd Inek the SGX hardware intodisclosing the

hased Tossted Bxecuhon Bovironment (FEE) Gt s enchave's encryplion keys sand producing measurement
weatbely seen as o pramisng salibon W ssdition:] seourily repants il delest renate alleskban, Ths resull dmngly
threats. While SGX promises strong protection to bug- sazgests il

tree software, decades of experience show that we have bonil secu)

to expect vulnerabilities in any non-trivial applicacion. In developmen S E c 1 7

o traditicnal envivonment, such vulnerabilitics often allow comnpulting b
attackers to take complete contol of vulneruble systems, Haven)
Ettorts to evaluate the sccurity of SGX have focused on

Traditional Attack Vectors

* Cache-based side channel

* Memory safety
* Weak mitigation techniques (e.g., ASLR)
¥« Uninitialized padding in EDL

22

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth

Worcester
{amog?

Abstract. In mod
commonly shared, a
Can cause privacy &
forced. Intel propos
within the processo

.CR] 24 Feb 2017

Ferdinand Brasser', Urs Miiller”, Alexandra Dmitrienko?, Kari Kostiainen?, Srdjan Capkun?, and
Ahmad-Reza Sadeghi'

mul

Side-c
tionof §
dependel
executiol
quently,
ing coun
widely 2
side cha

Cache Attacks on Intel SG

ABSTRACT

For the ot time, we peacticall
SGX enchaves are vuleer oble o
As o cooe stady, we presest an |
attack on AES when renming in
Usitngg Newve and Selfert’s elining
cache peohing mechasian relyving
10 extract the AES secret bey i
svestygating 80 encrypted blo

Bl it a . . 1@ e B B

r 2017

arXiv’17

SEC’17

Software Grand Exposure: SGX Cache Attacks Are Practical

Moritz Eckert

Sebastian Schinzel
FH Manster

Fﬂm arhinral@fh.mianctar a rx iv’ 1 7

Malware Guard Extension:

Using SGX

to Conceal Cache Attacks

(Extended Version)

Michael Schwarz
Graz University of Technology
Email: michacl.schwarz @iaik. tugraz.at

Clémentine Maurice
Graz University of Technology
Email: clementine. maurice@iaik tugraz.at

Samuel Weiser Daniel Gr
Graz University of Technology Graz University of
Email: samuel.weiser@iaik.tugraz.at Email: daniel. gruss @

Stefan Mangard
Graz University of Technology
Email: stefanmangard@iaik tugraz.at

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Cache attacks are possible and often, makes it easier
to launch the attack due to its strong threat model

(e.qg., using PMC)
—> Numerious defenses (e.g., coloring ...)

side cha ABSTRACT

e —— Using SGX to Conceal Cache Attacks

SOCX enchaves are vl oble s

As a ¢ ool o presesd (d d M
.d!xk'::. .\L‘:v;u: r’uu:u.'ulw (EXten e VerSIOn)
Usitgg Newve and Sedfent’s elininu

cache probing mechasias relyving

rect the AES secret v Michael Schwarz Samuel Weiser Daniel Gr
svestygating 480 encrypted bl Graz University of Technology Graz University of Technology Graz University of
e e e Email: michacl.schwarz @iaik.tugraz. at Email: samuel.weiser@iaik.tugraz.at Email: daniel. gruss @

Clémentine Maurice Stefan Mangard
Graz University of Technology Graz University of Technology
Email: clementine. maurice@iaik tugraz.at Email: stefanmangard@iaik tugraz.at

r 2017

Cache Attack is Practical Concern?

* [t depends on context/applications!
* Performance (= cache) vs. potential risks

* SGX makes the cache attack:
 Easier: by allowing privileged features (e.g., PMU)

* Harder: by leveraging isolation / randomization
(security by obscurity practical)

— Intel explictly noted that it’s better to address in
SW (if you wish) rather than HW (by default).

Traditional Attack Vectors

* Cache-based side channel

* Memory safety

* Weak mitigation techniques (e.g., ASLR)
¥« Uninitialized padding in EDL

26

Memory Safety Issues

* SGX is not free from memory safety issues

* Current ecosystem is built on memory unsafe lang.

Hacking in Darkness: Return-oriented Programming against Secure

Enclaves

Jaehvuk Leet ginsoo Jang' Yeongjin Jang™ Nokvun Kwak™ Yesewl Che

Taesoo Kin™ Marcus Peinado” Brent Bvunghoon Kan,

KAIST

Abstract

Intel Soltware Guanl Extensions (SGXT1 s i endwane
d Tasted Bxecohon bovironment (FEE) sl s

Iy seen as o pramivng salubon e tssdiions] security
threats. While SGX promisces strong protection to bug-
tree sof . i w that we have
pplication. In
0 s often allow
rable systems.
ave focused on

“Georgia lnstitute of Technology

tMicrosofi Dmitrii Kuvaiskii'

Pramod Bhatotia®
)) I'TU Dresden
Fhe comsequences of D
Lseher can comprletely breack
tlecthons and Inek the SGX h
enchave’s encryphion keys Abstract
reprarts that delial nenate alle Ghiodod execution based on Intel SGX provides strong secu-
saggests thist SGX reseanch g ouarantees for legacy applications running on untrusted
Bonal secunty miligabons 5l gorme . However, memory safety attacks such as Heart-
bleed can render the confidentiality and integrity properties
of shiclded execution completely ineffective. To prevent these
attacks, the state-of-the-art memory-safety approaches can be
used in the context of shielded execution,
Inthis work, we first showcase that two prominent software

developiment more conveme
computing busse snd the ks
Haven)

Attack

and hardware-based defenses, AddressSanitizer and Intel
MPX respectively, are impractical for shielded execution due

Oleksii Oleksenko!
Pascal Felber!

*The University of Edinburgh

Defense

SGXBOUNDS: Memory Safety for Shielded Execution

Sergei Arnautov! Bohdan Trach'
Christof Fetzer!

FUniversity of Neuchiitel

Shiekded execution aims to protect confidentiality and
integrity of applications when executed in an untrusted envi-
ronment [19, 22|, The main idea is o isolate the application
from the rest of the system (ncluding privileged software),
using only a narrow interface o communicate to the outside,
potentially malicious world. Since this interface defines the
secunty boundary, checks are performed 1o prevent the un

trusted environy on
m an attempt 1 n.

Shielded ex n
agamst memon e

snread. esneciallv on lecacy annlications written in unsafe

27

Return-oriented Programming (ROP)

vuln(*input) {
dst[0x100];
memcpy(dst, input, 0x200);

}

dst

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

}

dst

pop rdi; ret

29

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

e.g., system(“/bin/sh”)

dst

pop rdi; ret

system(argl)

30

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!
char dst[ekil; (e.g., loaded in an encrypted form)

memcpy(dst, input, IEEER);
}

31

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!

char dst[ekil; (e.g., loaded in an encrypted form)
memcpy(dst, input, IKEEa);

dst
0x0000
0x0008

0x0100
0x0108
0x0110
0x0118

X

0x0108

0x0110
0x0118

32

ROP in Darkness: Dark ROP

* Step 1. Debunking the locations of pop gadgets
 Step 2. Locating ENCLU + pop rax (i.e., EEXIT)
 Step 3. Deciphering all pop gadgets

 Step 4. Locating memcpy()

Step 1. Looking for pop Gadgets
<,

ou have a full control over the layout
of the enclave

0x0000

0x0008

0x0100

x0108

0x0110
0x0118

34

Step 1. Looking for pop Gadgets

Oxffo0
OxffO1
Oxff02

0x0000
0x0008

0x0100

0x0110
0x0118

Rip = 0xff00
(e.g., crash illegal instruction)

35

Step 1. Looking for pop Gadgets

Oxffo0
OxffO1
Oxff02

$

0x0000
0x0008

0x0100

0x0110
0x0118

Rip = 0xff00
(e.g., crash illegal instruction)

pop ?7?7?7?
ret

0x0000
0x0008

0x0100

ret
__0x0110 |
0x0118

Rip = 0x0118
(segfault)

36

Step 1. Looking for pop Gadgets

Oxffo0
OxffO1
Oxff02

Oxff30 | pop ???7?

0x0000

0x0000
0x0008

0x0008

0x0100

0x0100

0x0110
0x0118

Rip = 0xff00
(e.g., crash illegal instruction)

Rip =0x0128
2) (segfault)

Step 1. Looking for pop Gadgets

0xff02 Oxff30 | pop ???7?

Catalog of pop gadgets
(unknown args)

pop ?7?7?7?
ret

Oxff02 - pop ?;ret
Oxff30 = pop ?;pop ?;pop ?;ret

0x0000
0x0008

0x0000
0x0008

0x0100
ret

0x0100

__0x0110 |
0x0118

Rip = 0x0118 Rip =0x0128
(segfault) (segfault)

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions

* rax = 0: EREPORT
e rax = 1: EGETKEY

e rax =4: EEXIT

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions
* rax = 0: EREPORT

e rax = 1: EGETKEY

e rax =4: EEXIT 00000

0x0008

0x0100

“ 27779. ” t pop,;ret
— Scan code for each “pop????;ret
ret ENCLU

— If gracefully exit, rip = ENCLU

40

Step 3. Deciphering pop Gadgets

 EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— check arguments

0x0000
0x0008

0x0100
ret pop argl; pop arg2; ret

0x0001
0x0002

ret pop rax; ret

0x0004
ret ENCLU

41

Step 3. Deciphering pop Gadgets

 EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— check arguments Deciphering

pop? pop? gadget
8§8883 argl 0x0001

arg2 0x0002
0x0100 pPop rsi
ret pop argl; pop arg2; ret

= pop rdi
ret

Ox000
ret pop rax; ret
ret ENCLU

Register flle

rax = 0x0004
rsi = 0x0001

rdi = 0x0002

42

Step 4. Looking for memcpy()

* |dentifying memcpy(dst*, valid, 0x10)

pop rdi; pop rsi; pop rdx; ret

ret
OxEEQOQ

OxFFOO
0x0010

ret Varying (looking for memcpy)
ret pop rax; ret

ret ENCLU

— Check if “dst” contains 0x10 data
(+ gracefully exited)

43

Gadgets Everywhere (e.g., SDK

From

__intel_cpu_indicator_init:

Gadget From Gadget
ENCLU Gadget GPR Modification Gadget
do_ereport:
ENCLU libsgx_trts.a
pop ri5
pop rdx pop rl4
pop rcx pop ril3
pop rbx pop ril2
ret pop r9
sgx_register_exception_handler: pop r8
mov rax, rbx libsgx_trts.a pop rbp
pop rbx pop rsi
pop rbp pop rdi
pop rl2 pop rbx
ret pop rcx
Memcpy Gadget pop rdx
memcpy : libsgx_tstdc.a pop rax
ret
sgx_sgx_x.'a_proc_msg2_trusted. libsgx_tkey_exchange.a ENCLU G adget
pop rsi
pop ris do_ereport:
ret enclu
pop rdi pop rax
ret ret

sgx_tstdc.1lib

sgx_trts.lib

DEMOQO: PoC Dark ROP

root@ruach-desktop: fhome/ruach/work/repo/blindfapp_blind m =)

r blind/a, lind

00otEry: a¢ p: /home/ruac work/repo/ C 1v] | * root@ruach-desk
ASLR is turned off
add-symbol-file '/home/ruach/work/repo/blind/app_blind/isv_enclave.signed.so' Ox7ffff5884700 -readnow -s .interp ex7ffff5880238 -s .note.gnu.build-id ex7ffff5800254
Jhash ex7ffff5880278 -s .dynsyn ex7ffff580802b0 -s .dynstr ex7ffff5880340 -s .gnu.version Bx7ffffSBe@37e -s .gnu.version_d ex7ffff5886390 -s .rela. Ox7ffff58003c8 -s
.rodata @x7ffffsabdee® -s .eh_frame_hdr @x7ffff58c33c@ -s .eh_frame Ox7ffff58cdeed -s .gcc_except_table ex7ffff58d7748 -s .init_array ox7ffffSad7cd8 -s .data.rel.ro ox7f
fffSad7ce® -s namic Ox7ffff5ad8e8d -s .got @x7ffff5adefde -s .got.plt ex7ffff5adoeee -s .data ex7ffff5adoe2e -s .bss ex7ffffSadaSco

ymbol-fi -8 140737312212736

address space

se: ox7ffff5800000 enclave linit: ax7fff 6000000

nclave cpde base: ox7fff 158080000 enclave code linit: ox7ffff58d8000

add - symbol-file ' /home/ruach/work/repo/blind/app_blind/ enclave.signed.so' OxTfFFfS804700 -readnow -s .interp Ox7ffff5800238 $

Jhash ex7ffff5800278 Jdynsyn Ox7ffff58002b0 . Ox7fFff5800340 -s .gnu.version Ox7fFffS80037¢ -s .gnu.version_d Ox7fff 39 .rela.dyn Ox7ffff5800
.rodata @x7ffff58bdoce .eh_frame_hdr ox7ffff58c33c .eh_frame Ox7ffffS8cdeed -s .gcc_except_table Ox7ffff58d7748 -s .init_array Ox7ffff 8 -s .data.rel.ro
fffSad7ced s .dynamic OxTffffSad8e80 -s .got ex7ffffS5ads8fd® -s .got.plt Ox7ffffS5ado080 -s .data Ox7ffff5ado02e -s .bss OxTFfffSadaSce

Breakpoint 1, import_data_to_enclave (eid=3, retval=0x7fffffffcbé8, out_of enclave memory=0x7fffffffcc30, buf_size=18) at isv_app/isv_encl
264 ns.ns_out_of_enclave_nemory = out_of_enclave_menory;

Step1. Looking for pop gadgets

s

)
=
‘ :
B
=
®
B
K
)
]

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

SGXBOUNDS: Memory Safety for Shielded Execution

Dmitrii Kuvaiskii’ Oleksii Oleksenko!

Sergei Arnautov’ Bohdan Trach'

Pramod Bhatotia* Pascal Felber' Christof Fetzer'

"TU Dresden *The University of Edinburgh *University of Neuchitel

Abstract

Shielded execution based on Intel SGX provides strong secu-
rity guarantees for legacy applications running on untrusted
platforms. However, memory safety attacks such as Heart-
bleed can render the confidentiality and integrity properties
of shielded execution completely ineffective, To prevent these
attacks, the state-of-the-art memory-safety approaches can be
used in the context of shielded execution,

Shielded execution aims to protect confidentiality and
integrity of applications when executed in an untrusted envi-
ronment [19, 22]. The main idea is to isolate the application

from the rest of the system (including privileged software),
using only a narrow interface to communicate to the outside,

potentially malicious world. Since this interface defines the

security boundary, checks are performed to prevent the un-

trusted environment from)

in an attamnt ta laal con(

46

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

* Key idea: an efficient tag representation thanks to
smaller memory space!

UB pointer I

v

object LB

Lower Bound Upper Bound

Defense: SGXBounds

int *s[N], *d[N] int *s[N], *d[N]
s = specify_bounds(s, s + N)
d = specify_bounds(d, d + N)

for (i=0; i<M; i++): for (i=0; i<M; i++):
si=s+1 si=s+1
di=d+ 1 di=d+ 1

sp, sLB, sUB = extract(si)
if bounds_violated(sp, sLB, sUB):
crash(si)
val = load si val = load si
dp, dLB, dUB = extract(di)
if bounds_violated(dp, dLB, dUB):
crash(di)
store val, di store val, di

O o0 ~J =) wn -- W N e

e —
—
-

' o]

TN

48

Done w/ Memory Safety on SGX?

* SGXBounds is a temporary solution: no temporal
safety (i.e., UAF) and SGX likely supports more
memory in the future (e.g., large pages)

* Traditional mitigations help (or required)?

SGX Mitigation Checklist

* Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
& RELRO

DEP/NX

ASLR/PIE

ecall_pointer_user_check():

%rbp
%rsp,xrbp
$0x90,%rsp

xor %fs:0x28,%rs1
10 4010 <cecnll nointer user checkifAx11R~

callg 8fb@ <__stack_chk_fail>

%rdi, -0x88(%rbp)
O er i AOAL O walnin ™\ LCuvCy

retq

%fs:0x28 . %rax

%rax, -0x8(%rbp)

prologue epillogue

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
@ RELRO

%) ASLR/PIE

52

Defense: ASLR/SW-DEP inside SGX

* Popular mitigation schemes:
@ Stack Canary
@ RELRO

%) ASLR/PIE

SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs

Jachack Sea”® , Byounynung Lecti, Scongmin Kim*, Ming-Wei Shihd,
Insik Shin*. Dongsu [kan”, Taesvo Kim-®
“KAIST P Puede Universing Yieorgia tnstitore of Technology
{jachack, dallasHI04, ishin, dongsu_han)& kaistac ke, blec@? purdue.edu, {mingwei.shih, tacson | ¢ gatech.cdu

Abstract— I'raditional execution enviromments deploy Address
Space Layout Randomization (ASLR) to delend against nwamory
corruption attacks. However, Litel Software Guard Extension
(SGX), a pew trusted execution environment designed to serve
security-critical applications on the cloud. kacks such an ellective.
well-studied feature. i Fact, we find that applying ASLK (0 SGX
programs raises pon-trivial issues beyond simple engineering lor
a number of reasons: 1) SGX & designed Lo defeat a stronger
adversary than the traditional model, whidh requires the address
space kayoul (o be hidden from the hernel; 21 the limited memory
uses in SGX programs present a new challenge in providing a
sullicient degree of entropy: 3) remote attestation conflicts with
the dypamic relocation required for ASLK; and 41 the SGX
specification relics on known and fixed nddresses for key dota
strctures that cannot be rondomized.

svstem and hypervisor. It also offers hardware-based measure-
meat. attestation, and enclave page aceess control to verify the
eegrity of its application code.

Unlorumately, we chserve that twe properties, msmely,
conlide
secunly of SGX programs, espeoilly when tnuhition: | mes
corruption velpertn ines, such as huller overllow, exst o

library in Haven T12]
for Ine]l SGX 128, 2
unsafe programming
n an assembly languags

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

* Visible memory layout
* Small randomization entropy
* No runtime page permission change

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

Enclave program

Data pages

User process

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

In-enclave
loader

Code pages

Encrypted
enclave program

ﬁ 0

() Enclave program
(.4

. - Data pages

User process

SGX-Shield’s Approach:

In-enclave Loading

Stage 1

Enclave

In-enclave
loader

Code pages

Encrypted
enclave program

Enclave program

Data pages

User process

In-enclave
loading

Stage 2

Enclave

SGX related
data structure

Runtime Data

Data pages

User process

57

SGX-Shield’s Approach:

In-enclave Loading

Encrypted
enclave program

Stage 1

Enclave

In-enclave
loader

Code pages

Enclave program

Data pages

User process

In-enclave
loading

Stage 2

Enclave

data structure

Runtime Data S

SGX related

Data pages

User process

58

DEMO: SGX-Shield

Compile the enclave with SGX-Shield

https://github.com/sslab-gatech/SGX-Shield

*Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;

*Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;

struct usbdevfs connectinfo {
.devhum =1,
Slow =0,

5

*Uninitialized Padding Problem

struct usbdevfs connectinfo {
devnum;
slow;

devnum (4 bytes) slow (1 byte)

struct usbdevfs connectinfo {
.devhum =1,
Slow =0,

5

*Uninitialized Padding Problem

BN -

devnum (4 bytes) slow (1 byte)

() —

struct usbdevfs connectinfo {
.devhum =1,
Slow =0,

5

DEADBE

devnum (4 bytes)

slow (1 byte)

7N)

*Uninitialized Padding Problem

UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee
School of Computer Science, Georgia Institute of Technology

Al A e
ABSTRAC1
The aperating system kernel is the de facto trusted computing base
for most computer systens. To secure the OS kernel, many secunty
mechanisms, ¢ g., KASLR and StackGuard, have been increasingly

deployed 1o defend against attacks (e.g., code reuse mtack). How-

ever, the elfectiveness of these protections bas been proven 1o be
inadequate—there are many information leak vulneruhilities in the
kemel o Jeak the randomized pointer or canary, thus bypassing
KASLR and StackGuird, Other sensitive data in the kemnel, such as

1. INTRODUCTION

As the de facto trusted computing base (TCB) of computer sys-
tems, the opernting system (OS) kernel has always been a prime
target for attackers. By compromising the kernel, sttackers can es-
caline their privilege to steal sensitive data in the system and control
the whole comparer. There are theee main approaches to launch priv-

ilege escalabion atacks: 1) direct ¢
CCS’16

attacks [17]: and 3) code reuse att
Prevention) protection has been de

Ecall/Ocall: EDL Interface for SGX

{
e/ocall_test_struct(ts);
}
If there is a padding issue in , it

leaks (or inject) potentially sensitive data
(e.g., a private key like HeartBleed)

Ecall/Ocall: EDL Interface for SGX

untrusted {

void efocall_test_struct(test struct ts);

2017

Oct

5

>s.CR] 2

Leaking Uninitialized Secure Enclave Memory via Structure Padding
(Extended Abstract)

Sangho Lee Taesoo Kim

Georgia Institwee of Technology

Abstract

Intel Software Guard Extensions (SGX) aims to pro-
vide an isolated execution environment, known as an
enclave, for a user-level process to maximize its con-
fidentiality and integrity. In this paper, we study how
uninitialized data inside a secure enclave can be leaked
via structure padding. We found that, during ECALL and
OCALL. proxy functions that are automatically generated
by the Intel SGX Software Development Kit (SDK)
fully copy structure variables from an enclave to the
normal memory to retumn the result of an ECALL function

and to pass input parameters to an OCALL function. If the

waddica hisas ccalalelallcad

atamsmtiima smalablad caceala

system calls). Their any other

jumping

trusted functions (e.g.,
attempts 1o execute untrusted functions (e.g..
into non-enclave code) result in faults.

Intel SGX Software Development Kit (SDK) is
shipped with a tool called Edger8r [1] that automati-
cally and securely generated code for ECALL and OCALL
interfaces, Although SGX enclaves can access both
EPCs and normal memory, non- cn-.la\c applu:mom
can only access the normal m
and output values for th
between them need to
ory first and then copied
caller later. The Edger8r

DEMO: SGX Bleed POC

printf , ret.val3 ;
* = *)&ret;
printf ;
=0; 1< ret); ++1i
1% 8 ==0) printf H
printf , pPtrii]);
i% 8 ==7) printf H

i == 15) printf

sgx_destroy_enclave/global_eid);

sizeof(tl->val2): 1
sizeof(tl->val3): 8

tl->val
tl->val2
t1->val3
+t1:

| 44 44 33
| 99 AD BE

lues
| 88 88 77

I uwn

return *tl

0x1111222233334444
@x99
@x5555666677778888

33 22 22 11 11 |
EF DE AD BE EF | == uninit. va

77 66 66 55 55 |

Sensitive data Igakeduviam

padding!

-UU-:@-————F20 App.cpp

Bot (251,0) Git:master

sizeof(ret):
sizeof(ret.vall): 8
sizeof(ret.val2): 1
sizeof(ret.val3): 8

24

ret.vall: 0x1111222233334444
ret.val2: 0x99
ret.val3: Ox5555666677778888

ret:

| 44 44 33 33 22 22 11 11 |
| 99 AD BE EF DE AD BE EF | <= copied via

padding!

| 88 88 77 77 66 66 55 55 |

~/sQx blPed/poc/SGX PADDING POC master* sangh

(C++/L AC o@sgx—wor atio
y B

https://github.com/sslab-gatech/unisan

67

Using Rust SGX SDK?

00
BaiNEE

Rust SGX SDK helps developers write Intel SGX applications in Rust programming language.

Rust SGX SDK

v0.9.0 Release

Almost there! Rust SGX SDK v0.9.0 is coming up as a beta version of the future v1.0.0, with the
as well as many new features! Also we added support for programming SGX untrusted part in
it's easy to port Rust crates to the SGX trust execution environment and write the whole SGX ¢
refer to release_notes for further details.

Good news! Our poster 'Rust SGX SDK: Towards Memory Safety in Intel SGX Enclave' [pdf] ha
Please kindly cite our poster if you like Rust SGX SDK!

https://github.com/baidu/rust-sgx-sdk

68

Using Rust SGX SDK?

* A promising direction to address traditional attack
vectors

e But, it still suffers from SGX-Bleed!

New Attack Vectors

* Page table attack

* Branch shadowing attack
% « Rowhammer against SGX

70

Page Table Attack
controlled-channel attack

* Page level access pattern = reveal sensitive info.
(e.g., page faults, page access bits, ...)

2015 IEEE Symposium on Security and Privacy

Controlled-Channel Attacks: Deterministic Side

Channels for Untrusted Operating Systems

Yuunzhong Xu
The University of Texas ar Austin
v @ cx wtexas, edu

Abstract—The presence of large numby
abilities in popular feature-rich commed
has Inspleed a Jong line of work on excl

a & hasse

Weidong Cui Marcus Peinado
Microsoft Research Microsoft Research
wdew @ microsoft.com maeuspe @ micrasoft. com
Telling Your Secrets Without Page Faul Original Recovered

Stealthy Page Table-Based Attacks on Enclaved

b
Jo Van Bulck Nico Weichbrodt (®)
imec-DistriNet, KU Leuven IBR DS, TU Braunschweig IBR
Jjo.vanbulck@cs.kuleuven.be weichbr@ibr.cs.tu-bs.de kay

Frank Piessens
imec-DistriNet, KU Leuven
[frank.piessens @cs.kuleuven.be

Abstract

Protected module architectures, such as Intel SGX, en-
able strong trusted computing guarantees for hardware-
enforced enclaves on top a potentially malicious operat-

ino euctem Hoawever anch enclaved avecntion enviran-

Raoul Strac
imec-DistriNet, K1
raoul.strackx@cs.kuleuven.be

ware to make it re

hardware preve - 71
ing or writing a

DEMO: Page Fault Attack

Page sequences:
test()
process_secret()

funO() - 's'

()-'e
fun4() - 'c’
()-'r

C

fun10() - 't
The secret input is "secret"!!

Defense: T-SGX

* Using Intel Transactional Synchronization Extension
(TSX) to isolate page faults inside SGX

T-SGX: Eradicating Controlled-Channel Attacks
Against Enclave Programs

Marcus Peinado
Microsoft Rescarch
marcuspe @rmicrosoft.com

Ming-Wei Shih'*, Sangho Lee!, and Taesoo Kim
Georgia Institute of Technology
[mingweishih, sangho, taesoo | @ gatech.edu

Abstract—Intel Software Guard Extensions (SGX) is a [. INTRODUCTION

hardware-based trusted execution environment (TEE) that en-

ables secure execution of a program in an isolated emviron- Hardware-based trusted execution environments (TEEs)
ment, an enclive. SGX hardware protects the running enclave have become one of the most

against maliciows software, including an operating system (0OS), varous security threats, includi N DSSI 17

a hypervisor, and even low-level firmwares, This strong security kemel exploits, hardware Trojans

Key Idea: TSX Isolates Faults!

* Unexpected side-effects (see, DrK [CCS’16])
* Any faults - invokes an abort handler

unsigned status;

I
2

3 // begin a transaction

4 1f ((status = _xbegin()) == _XBEGIN_STARTED) {
5 // execute a transaction

6 [code]

7 // atomic commit

8 _xend();

9 } else {

10 // abort

1}

74

Design of T-SGX (Compiler)

Enclave
(~ entry point ~N
Host .
> o entry, r15 @ execution
program _— jmp begin push rbp entry
. mov rax, rbx
©® EENTER (Sprmgboard (R-X/
next: xend() o L
begin: Xbegin()/l‘\;?;gligtl’ rl5
jmp r15 o
e ﬁi’édr(fs > movibx,rex EBI
,[abort handler Mov E'Bz', rls
EEXIT/AEX d ® ab (;'r:tp next
User space - /
Kernel space @ terminate (or interrupted)
Exception . .
handler transactional regions
—» control flows

T-SGX: Eradicating Page Faults

* Technique to avoid false aborts (e.g., capacity)
* Security analysis - springboard design
* Performance optimizations

T-SGX: Eradicating Page Faults

* Technique to avoid false aborts (e.g., capacity)
* Security analysis - springboard design
* Performance optimizations

50% CPU, 30% Mem overheads

"“'nIH]"‘] T

S
&

<<O
< "}‘ & ?f?“’\ %Q’

&
N4 R

\/0

77

DEMO: T-SGX
-

mingwei@sgx3:~$ sudo dmesg -wH
[Oct31 20:45] [SGX PAGE TABLE ATTACK HELPER] Init done
[SGX PAGE TABLE ATTACK] Set the trap range 0x00007ffff0007000 - Ox00007ffff0014000, spr
ingboard page 0x00007ffff0032000
. OxQ0007ff 0032000

mingwel@sgx3:~/workspace/t-sgx/test/sgx-pf-attack$./app

Attacker can only observe |
single-page information! |
-

https://github.com/sslab-gatech/t-sgx

New Attack Vectors

* Page table attack

* Branch shadowing attack

% « Rowhammer against SGX

79

New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

* Observation:
* Branch history is shared between SGX and non-SGX

— Execution history of an enclave affects the
performance of non-SGX execution

New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing

Sangho Lee’ Ming-Wei Shih® Prasun Gera” Taesoo Kim' Hyesoon Kim' Marcus Peinado*

T Georgia Institute of Technology
* Microsoft Research

Abstract we need either to fully trust the operator, which is prob-
lematic [16], or encrypt all data before uploading them
to the cloud and perform computations directly on the
encrypted data. The latter can be
phic encryption, which is still s
preserving encryption, which is
when we use a private cloud or

Intel has introduced a hardware-based trusted execution
environment, Intel Software Guard Extensions (SGX),
that provides a secure, isolated execution environment,
or enclave, for a user program without trusting any un-
derlying software (e.g., an operating system) or firmware.

ldea: Exploiting New HW Features

* Intel Skylake (and Broadwell) introduced two new
debugging features that report prediction results

 Last Branch Record (LBR)
* Intel Processor Trace (PT)

—> But only for non-enclave programs
(or enclave on a debug mode)

Our Approach: Branch Shadowing

enclave

Shadow replica

non-enclave

83

Our Approach: Branch Shadowing

enclave

o
e 0x0010 are mapped onto the

same branch prediction buffer

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je 2 jmp)

BTB/BPU

non-enclave

imp OxFF104¢ atect

84

Our Approach: Branch Shadowing

enclave

. are mapped onto the

je 0x0010 . .
same branch prediction buffer

| jmp OxFF10 ‘

Intel PT/LBR

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je 2 jmp)

* Monitor with LBR/PT and
extract branch prediction
results indirectly

BTB/BPU

non-enclav

85

Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

..... Which one would be the next instr.

e Ll1%= I)
inc rbx ¢ || to be predicted?

Ll:dec rbx<=

86

Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

;m S0, rax
Make this prediction if
1) there is no history or

1:5 rbx
hhidee 2) the branch has not been taken

87

Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

cmi $0, rax

inc rbx

Li:dec rbx<=* |Mlake this prediction if
the branch has been taken

Conditional behavior - Reveal history
How can we know which branch was taken?

88

Branch Prediction vs. Misprediction

* Measure branch execution time

* Take longer if a branch is incorrectly predicted
(e.g., roll back, clear pipeline, jump to the correct target)

RDTSCP 94.21 . 13.10 }’20.61 806.56

4
PTCYC 5959 \ 1444 /90.64 ,," 191.48
/
LBRcycle 25.69 %9.72 ./ 3504 / 10.52
\\\ ,,/ ll
\ ¢ /
\v]

— Observable difference but high measurement noise

Exploiting New HW Features

* Intel LBR/PT explicitly report the prediction result,
but only taken branches (w/ limited buf size)

* Approach:

* Translating all cond. to be taken in the shadow copy
* Synchronization b/w enclave and its shadow

Example: Inferring Cond. Branch

Enclave
a cmp $0, rax
0x00530: je 0x005f4 i

O0x00532: inc rbx

(0x005f4: dec rbx l
o

91

Example: Inferring Cond. Branch

Enclave Shadow copy
4 cmp SO, rax\ aligned cmp rax, rax
0x00530: He Ox005f4-’-'-;-[Z;I;\f--------"OXff530: je Oxff5f4rm=
0x00532: inc rbx 2 0x££532: nop
(0x005£4: dec rbx J Oxf£5f4: nop

* Prepare a shadow copy w/
* Colliding conditional branches

92

Example: Inferring Cond. Branch

Shadow copy

aligned

je 0x005f4 r.::i:;:.x;--------.

Enclave
/
0x00530:
0x00532: inc rbx
\9x005f4: dec rbx

l‘I|
¢ 1
Sg==’1 1
N 1
[]

LI

[

[

[}

[

[

'll

L’

Re ’

>0xf£530:
Oxff532:

Oxffbf4:

/-"

je Oxff5f4

nop

nop

* Prepare a shadow copy w/
* Colliding conditional branches
* Always to be taken (to be monitored by LBR)

93

Example: Inferring Cond. Branch

Enclave 4 BPU/BTB N
4 cmp $0, rax e
0x00530: je 0x005f4) P 0x®™*530 | nottaken
0x00532: inc rbx OR
|
H _____ N * %
\0x005£4: dec rbx l 0x™7530 taken

Example: Inferring Cond. Branch

Enclave 4 /BRU/BTB I
4 cmp $0, rax ”
0x00530: je 0x005f4 B M 0x7530\| nottaken
0x00532: inc rbx 1:— OR
T * 0x’*530 taken
Qx005f4: dec rbx
3¢ T/
‘[e] Indexed/tagged by
lower 31 bits

95

Example: Inferring Taken Branch

Shadow code

BPU/BTB o e, 1Es
0x**530 taken FpF-------- +0xff530: je Oxff5f4

O0xf£f532: nop
{ LBR }

,0xff5f4: nop

Example: Inferring Taken Branch

Shadow code

BPU/BTB o e, 1Es
0x**530 taken FpF-------- +0xff530: je Oxff5f4

O0xf£f532: nop
LOxff5f4: nop Correct!
/
{ LBR }

* BPU/BTB correctly predicts the execution of the
shadow branch using the history

97

Example: Inferring Taken Branch

Shadow code

BPU/BTB

0x**530

taken fFF-—-——---- +»0xf£f530: je Oxff5f4

LBR

cmp rax, rax

O0xf£f532: nop

LOxff5f4: nop Correct!

Oxff5f4

{0xff530

Predicted }

* If LBR reports:
* Predicted - The target branch has been taken

98

Example: Inferring Not-taken Branch

Shadow code
BPU/BTB cmp rax, rax

Ox**530 not taken o s e e o s -'OXff53o: je OXff5f4

O0xf£f532: nop
LBR
0xff530| Oxff5f4 [Mispredicted

* If LBR reports:
* Predicted - The target branch has been taken
* Mispredicted - The target branch has NOT been taken

,OXff5f4: nop Wrong!

99

Enabling Single Stepping!

* Check branch state as frequently as possible to
overcome the capacity limit of BPU/BTB and LBR

e e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake)

* Increase timer interrupt frequency
* Adjust the TSC value of the local APIC timer

e Disable the CPU cache
* CD bit of the CRO register

~50 cycles

~5 cycles

Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi_exp mod(X, A, E, N, RR) { SIiding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;
if (ei == 0 && state == 1)

mpi montmul (X, X, N, mm, &T);

101

Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi_exp mod(X, A, E, N, RR) { SIiding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

Taken only when ei is zero

mpi montmul (X, X, N, mm, &T);

102

Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi_exp mod(X, A, E, N, RR) { SIiding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

state == 0)_ __

mopi montmil(X. X. N. mm. &T):

* The probability that the two branches return
different results: 0.34 (error rates)

Taken only when ei is zero

* The inference accuracy of the remaining bits: 0.998

* We were able to recover 66% of an RSA private
key bit from a single run.

e <10 runs are enough to fully recover the key.

DEMO: Branch Shadowing Attack

Branch Shadowing Attack
- RSA exponentiation -

What Else?

libc/strtol Convert astring The sign and length of an
into an integer input
Hexadecimal digits
libc/vfprintf Print a formatted The input format string
string

LIBSVM/k_function Evaluate a kernel The type of a kernel (e.g.,
function linear, RBF)
The number of features

Apache/lookup_bui Parse the method HTTP request method (e.g.,
Itin_method of an HTTP GET, POST)
request

Defense: Flushing Branch States
(Hardware)

 Clear branch states during enclave mode switches

e 2 =
o 0 o~ N

© ©
RN

Normalized Instructions per cycle

o

Defense: Flushing Branch States
(Hardware)

 Clear branch states during enclave mode switches

* How much overheads (depending on frequency)?

e Simulation: Flushing per >10k cycles incurs
negligible overheads

SPEC Benchmark
no flushes flush per 1k cycles flush per 100k cycles flush per 10M cycles

flush per 100 cycles flush per 10k cycles flush per 1M cycles

Defense: Obfuscating Branch
(Software/Compiler)

* Set of conditional/indirect branches >
a single indirect branch + conditional move instructions

* The final indirect branch has a lot of targets such that it
is difficult to infer its state.

block0:mov $block1, r15

cmp $0, $a
block0: cmp $0, $a ek ;Iiln;\;zft»lbIOCkZ, rl5 Zigzagger's trampoline
"L ’ 0CKU.).
je block?2 block1: <codel > \ Zzl:jmp blOCkl.j

block1: <codel > mov $block5, r15 /

jmp l;:oc}sfg block1.j: jmp zz2 :
block2: cmp $0, block2:mov $block3, r15 <= ¥ :

je block4 ‘ cmp $0, $b ;i zz2:jmp block2j
block3: <code2> cmov $block4, r15 /

jmp block5 block2.j: jmp zz3 g : :
block4: ¢ clc))de3> block3: <code2> 7 i >723:jmp block3

. mov $block5, r15
blockS: <code4> block3.j: jmp zz4

block4: <code3>
block5: <code4>

\Zm jmpq *r15

Defense: Obfuscating Branch
(Software/Compiler)

* LLVM-based implementation
e Overhead (nbench): <1.5x
* Just mitigate the attack, don’t solve it completely

New Attack Vectors

* Page table attack
* Branch shadowing attack

% « Rowhammer against SGX

110

SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown
* Rowhammer (SW) can trigger the violation!

DRAM
(pr— \
/ A DRAM BANK \
EPC — Int Tree
pl
Root r Y
[—L’ ¥y aasasl
EPC — Enclaves \ /
. ' Row Buffer

void dbl_sided_rowhammer(uint64_t *pl

SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown

 Rowhammer (SW) can trigger the violation!

while(n_reads-- > 0) {

}

// read memory pl and p2

asm volatile("mov (%0), %¥rl®;"
asm volatile("mov (%0), %¥rll;"
// flush pl and p2 from the cache

asm volatile("clflushopt (%0);" :
asm volatile("clflushopt (%0);" :

chk_flip(Q);

}

, uint64_t *p2, uint64_t n_reads) {

: "r"(pl) :
» 'r'(p2) ¢

"memory");
"memory") ;

-

Yeongjin Jang’
Oregon State University
yeongjin.jang@oregonstate.edu

Sangho Lee
Georgia Institute of Technology
sangho@gatech.edu

Abstract

Intel Software Guard Extensions (SGX) provides a strongly isolated
memory space, known as an enclave, for a user process, ensuring
confidentiality and integrity against software and hardware attacks.
Even the operating system and hypervisor cannot access the en-
clave because of the hardware-level isolation. Further, hardware
attacks are neither able to disclose plaintext data from the enclave
because its memory is always encrypted nor modify it because its
integrity is always verified using an integrity tree. When the proces-
sor detects any integrity violation, it locks itself to prevent further
damages; that is, a system reboot is necessary. The processor lock
seems a reasonable solution against such a powerful hardware at-
tacker; however, if a software attacker has a way to trigger integrity

SGX-Boms: Locking Down the Processor via Rowhammer Attack

Jaehyuk Lee
KAIST
jaehyuk.lee@kaist.ac.kr

Taesoo Kim
Georgia Institute of Technology
taesoo@gatech.edu

ACM Reference Format:

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Boms:
Locking Down the Processor via Rowhammer Attack. In SysTEX'17: 2nd
Workshop on System Software for Trusted Execution , October 28, 2017, Shang-
hai, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3152701.3152709

1 Introduction
Trusted Execution E
enable secure compul
program without rel

= SysTEX'17

Extensions (SGX) [18] is a commodity hardware-based TEE imple-

About Integrity Violation

* SGX assumes HW/physical attackers
* Integrity violation - drop-and-lock policy

* Implications:
* DoS: Freezing an entire machine (cloud provider)
e Require power recycle (not via normal methods)

SGX-Bomb Remarks

* Easier to trigger than normal rowhammer
i.e., a single, arbitrary bit in EPC region (128 MB)

* Harder to detect
* Not notifiable in terms of resource usages

* Popular defenses (e.g., in Linux) rely on PMU (e.g., cache
misses) that is not possible for enclaves

DEMO: SGX-Bomb

t
Elapsed ¢
Elapsed tine:

s

=~ Pressing

- Alt+Sysrqg+b/o
=doesn't work!!!

Defenses against SGX-Bomb

e Use LPDDR3 compliant to Intel’s Pseudo-TRR
(Target Row Refresh)

e ECC can’t completely block (easy to trigger multiple bits)

* Potential defenses:
* Using Uncore PMU
 Row-aware memory allocation for EPC regions

Summary <intel®)

* Intel SGX is a practical, promising building block to
write a secure program

* Intel SGX has unusually strong threat model,
opening up unexpected attacks

* Today’s Talk: Recent Attack/Defense of Intel SGX

117

Summary intel®)

* It’s not future technology; it’s already everywhere!

Why Azure Solutions Products Documentation Pricing Training Marketplac

e { Y a2
L B .|
1l ' Integrated Board
& _

Blog > Virtual Machines

Introducing Azure confidential
computing

Posted on September 14, 2017

e Mark Russinovich, CTO, Microsoft Azure

https://software.intel.com/en-us/sgx/academic-research

Backup

Local APIC Timer

* OS can program the timer interrupt (belonging to
the local APIC).

e Recent Linux kernel uses the TSC-deadline mode.

e Schedule the next timer interrupt with the time stamp
counter (TSC) value

tsc = rdtsc();
wrmsrl (MSR IA32 TSC DEADLINE,
tsc + (((uob4) delta) * TSC DIVISOR));

/% linux-4.4.23/arch/x86/kernel/apic/apic.c */

// manipualte the delta of TSC-deadline mode

unsigned int lapic_next_deadline_delta = 0U;
EXPORT_SYMBOL_GPL (lapic_next_deadline_delta);

// specify the virtual core under attack
int lapic_target_cpu = -1;
EXPORT_SYMBOL_GPL (lapic_target_cpu);

// a hook to launch branch shadowing attack
void (*timer_interrupt_hook) (void*) = NULL;
EXPORT_SYMBOL_GPL (timer_interrupt_hook) ;

// update the next TSC deadline

static int lapic_next_deadline(unsigned long delta,
struct clock_event_device *evt) {

Modified Local APIC Timer

Exported hooks to perform attacks
delta=1000 was the minimum value

we could use (i7-6700K).

About 50 ADD instructions were
executed between two timer interrupts.

32 // handle a timer interrupt
33 static void local_apic_timer_interrupt(void) {

34
35
36
37
38
39
40

ub4 tsc;
tsc = rdtsc();
if (smp_processor_id() != lapic_target_cpu) {
wrmsrl (MSR_TA32_TSC_DEADLINE,
tsc + (((u64) delta) * TSC_DIVISOR)); // original 4
}
e {
igimsrl(MSR_IA32_TSC_DEADLINE,
tsc + lapic_next_deadline_delta); l// custom deadline
}
return 0;
}

int cpu = smp_processor_id(Q);
struct clock_event_device *evt = &per_cpu(lapic_events, cpu);

if (cpu == lapic_target_cpu && timer_interrupt_hook) {
timer_interrupt_hook((void*)&cpu); // call attack code
}

) .

121

Last Branch Record

* Record the information of recently taken branch
instructions (Skylake: up to 32)
* Branch instruction address (from)
* Target address (to)
* Prediction result (success/failure)
* Elapsed core cycles between LBR entry updates

* Selectively record branch information
* Branch type: conditional/indirect, function call/return
* Space: User and/or kernel

O 00 9 O L A W N =

W W W N N N NN N N N N N = e e = e e e e
N = O 0O 0 N AN R WD R, O O 0NN R WD = O

/* Sliding-window exponentiation: X = AAE mod N */
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi
const mbedtls_mpi *E, const mbedtls_mpi *N,
mbedtls_mpi *_RR) {
state = 0;
while (1) {
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;
// cmpq 0x0,-0xc68(%rbp); jne 3f317;
* 1f (ei == 0 && state == 0)
continue;
// cmpq 0x0,-0xc68(%rbp); jne 3f371;
* 1f (ei == 0 && state == 1)
+ mpi_montmul (X, X, N, mm, &T);
state = 2; nbits++;
wbits |= (ei << (wsize-nbits));
if (nbits == wsize) {
for (1 = 0; 1 < wsize; i++)
+ mpi_montmul (X, X, N, mm, &T);
+ mpi_montmul (X, &W[wbits], N, mm, &T);
state--; nbits = wbits = 0;
3
}
3

:‘:A’

123

Page-fault Attack?

11000/001101011001...

/* X = A”E mod N */ call mpi_montmul six times (page faults)
mbedtls mpi_exp mod(X, A, E, N, _RR) { 11000[0/01101011001...
;hile (1) | call mpi_montmul once

110000/0(1101011001...
// i-th bit of exponent

ei = (E->p[nblimbs] >> bufsize) & 1; call vyl oo

11000001101011001...

if (el == 0 && state == 0) call mpi_montmul six times , :
continue; — : leaked bits

if (ei

if (nbits == wsize) { =~ Differentiate these

/
4

/ two function calls

fo 0; i < wsize; ++i)
mpi montmul (X, X, N, mm, &T);

mpi montmul (X, &W[wbits], N, mm, &T);

Recognizable bit fraction: (1+window size)/2
(~30% if window size is five)

124

Inferring Indirect Branch

Enclave

-
0x00530 .\

O0x00532: inc rbx

@x005f4: dec rbx

* Infer whether a target indirect branch in an enclave
has been executed

125

Inferring Indirect Branch

Enclave Shadow code

-

\0x005£4: dec rbx / OxfF5f4: nop

0x00530 .\ aT9ne oxees30
x 4--------' x : Jjmpq *rdx \—C@

0x00532: inc rbx Oxf£532: nop

mov O0xff532, rdx

* Infer whether a target indirect branch in an enclave
has been executed

* Prepare shadow code for a target branch
e Colliding indirect branch
* Jump to the next instruction

* The execution of the shadow branch is affected by
the target branch.

Inferring Indirect Branch

Enclave

O0x00532: inc rbx

@x005f4: dec rbx .~

......

[.

4 BPU/BTB)
Ox**530 n/a
OR
"""" > Ox**530 0x005f4
NG —/
LBR]

* BPU/BTB is updated according to the execution of
the target branch.

* LBR ignores branch execution inside an enclave.

Inferring Indirect Branch (Executed)

Wrong!

Shadow code

Oxf£f532:
U4

’

/

U4
A 0xff5f4:

Jmpg *rdx
nop

BPU/BTB mov Oxff532, rdx
0x**530 0x005f4 |r-------- +0x££530:

nop

{0xff530 Oxff532

LBR
Mispredicted

* BPU/BTB mispredicts the execution of the shadow

branch.

* LBR reports the corresponding branch information.
* Mispredicted - The target branch has been executed.

128

Inferring Indirect Branch (Not Executed)

Shadow code

BPU/BTB
0x**530 n/a I IS, +0x£f£f530: Jjmpg *rdx

\

/

mov O0xf£f532, rdx

0x£f£532: nop Correct!

’

’

’

, .
‘Oxff5f4: nop

LBR
Oxff530| Oxff532

/,,
,/
Predicted

* BPU/BTB correctly predicts the execution of the

shadow bra

nch.

* LBR reports the corresponding branch information.
* Predicted - The target branch has not been executed.

129

